14 using namespace TMVA::Experimental;
16 void tmva103_Application()
19 RBDT<> bdt(
"myBDT",
"http://root.cern/files/tmva101.root");
22 auto y1 = bdt.Compute({1.0, 2.0, 3.0, 4.0});
24 std::cout <<
"Apply model on a single input vector: " << y1[0] << std::endl;
27 float data[8] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0};
28 RTensor<float> x(data, {2, 4});
29 auto y2 = bdt.Compute(x);
31 std::cout <<
"Apply model on an input tensor: " << y2 << std::endl;
34 ROOT::RDataFrame df(
"Events",
"root://eospublic.cern.ch//eos/root-eos/cms_opendata_2012_nanoaod/SMHiggsToZZTo4L.root");
35 auto df2 = df.Filter(
"nMuon >= 2")
36 .Filter(
"nElectron >= 2")
37 .Define(
"Muon_pt_1",
"Muon_pt[0]")
38 .Define(
"Muon_pt_2",
"Muon_pt[1]")
39 .Define(
"Electron_pt_1",
"Electron_pt[0]")
40 .Define(
"Electron_pt_2",
"Electron_pt[1]")
42 Compute<4, float>(bdt),
43 {
"Muon_pt_1",
"Muon_pt_2",
"Electron_pt_1",
"Electron_pt_2"});
45 std::cout <<
"Mean response on the signal sample: " << *df2.Mean(
"y") << std::endl;