98 #define TEST_INPUT_COVARIANCE
100 void CreateHistogramCopies(TH1 *h[3],TUnfoldBinning
const *binning);
101 void CreateHistogramCopies(TH2 *h[3],TUnfoldBinning
const *binningX);
103 TH2 *AddOverflowXY(TH2 *h,
double widthX,
double widthY);
104 TH1 *AddOverflowX(TH1 *h,
double width);
106 void DrawOverflowX(TH1 *h,
double posy);
107 void DrawOverflowY(TH1 *h,
double posx);
110 double const kLegendFontSize=0.05;
113 void DrawPadProbability(TH2 *h);
114 void DrawPadEfficiency(TH1 *h);
115 void DrawPadReco(TH1 *histMcRec,TH1 *histMcbgrRec,TH1 *histDataRec,
116 TH1 *histDataUnfold,TH2 *histProbability,TH2 *histRhoij);
117 void DrawPadTruth(TH1 *histMcsigGen,TH1 *histDataGen,TH1 *histDataUnfold,
118 char const *text=0,
double tau=0.0,vector<double>
const *r=0,
120 void DrawPadCorrelations(TH2 *h,
121 vector<pair<TF1*,vector<double> > >
const *table);
123 TFitResultPtr DoFit(TH1 *h,TH2 *rho,TH1 *truth,
char const *text,
124 vector<pair<TF1*,vector<double> > > &table,
int niter=0);
126 void GetNiterGraphs(
int iFirst,
int iLast,vector<pair<TF1*,
127 vector<double> > >
const &table,
int color,
128 TGraph *graph[4],
int style);
129 void GetNiterHist(
int ifit,vector<pair<TF1*,vector<double> > >
const &table,
130 TH1 *hist[4],
int color,
int style,
int fillStyle);
133 void IDSfirst(TVectorD *data, TVectorD *dataErr, TMatrixD *A_, Double_t lambdaL_, TVectorD* &unfres1IDS_,TVectorD *&soustr);
135 void IDSiterate(TVectorD *data, TVectorD *dataErr, TMatrixD *A_,TMatrixD *Am_,
136 Double_t lambdaU_, Double_t lambdaM_, Double_t lambdaS_,
137 TVectorD* &unfres2IDS_ ,TVectorD *&soustr);
144 gErrorIgnoreLevel=kInfo;
146 TH1::SetDefaultSumw2();
148 gStyle->SetOptStat(0);
150 g_rnd=
new TRandom3(4711);
154 TFile *outputFile=
new TFile(
"testUnfold7_results.root",
"recreate");
158 TFile *inputFile=
new TFile(
"testUnfold7_histograms.root");
162 TUnfoldBinning *fineBinning,*coarseBinning;
164 inputFile->GetObject(
"fine",fineBinning);
165 inputFile->GetObject(
"coarse",coarseBinning);
167 if((!fineBinning)||(!coarseBinning)) {
168 cout<<
"problem to read binning schemes\n";
172 fineBinning->Write();
173 coarseBinning->Write();
176 #define READ(TYPE,binning,name) \
177 TYPE *name[3]; inputFile->GetObject(#name,name[0]); \
179 if(!name[0]) cout<<"Error reading " #name "\n"; \
180 CreateHistogramCopies(name,binning);
184 READ(TH1,fineBinning,histDataRecF);
185 READ(TH1,coarseBinning,histDataRecC);
186 READ(TH1,fineBinning,histDataBgrF);
187 READ(TH1,coarseBinning,histDataBgrC);
188 READ(TH1,coarseBinning,histDataGen);
190 READ(TH2,fineBinning,histMcsigGenRecF);
191 READ(TH2,coarseBinning,histMcsigGenRecC);
192 READ(TH1,fineBinning,histMcsigRecF);
193 READ(TH1,coarseBinning,histMcsigRecC);
194 READ(TH1,coarseBinning,histMcsigGen);
196 READ(TH1,fineBinning,histMcbgrRecF);
197 READ(TH1,coarseBinning,histMcbgrRecC);
199 TH1 *histOutputCtau0[3];
201 TH1 *histOutputCLCurve[3];
207 double biasScale=1.0;
208 TUnfold::ERegMode mode=TUnfold::kRegModeSize;
212 TUnfoldDensity *tunfoldC=
213 new TUnfoldDensity(histMcsigGenRecC[0],
214 TUnfold::kHistMapOutputHoriz,
216 TUnfold::kEConstraintNone,
217 TUnfoldDensity::kDensityModeNone,
220 tunfoldC->SetInput(histDataRecC[0],biasScale);
221 tunfoldC->SubtractBackground(histMcbgrRecC[0],
"BGR",fBgr,0.0);
222 tunfoldC->DoUnfold(0.);
223 histOutputCtau0[0]=tunfoldC->GetOutput(
"histOutputCtau0");
224 histRhoCtau0=tunfoldC->GetRhoIJtotal(
"histRhoCtau0");
225 CreateHistogramCopies(histOutputCtau0,coarseBinning);
226 tunfoldC->ScanLcurve(50,tauMin,tauMax,0);
229 histOutputCLCurve[0]=tunfoldC->GetOutput(
"histOutputCLCurve");
230 tunfoldC->GetRhoIJtotal(
"histRhoCLCurve");
231 CreateHistogramCopies(histOutputCLCurve,coarseBinning);
232 histProbC=tunfoldC->GetProbabilityMatrix(
"histProbC",
";P_T(gen);P_T(rec)");
234 TH1 *histOutputFtau0[3];
236 TH1 *histOutputFLCurve[3];
240 TSpline *logTauX,*logTauY;
245 TUnfoldDensity *tunfoldF=
246 new TUnfoldDensity(histMcsigGenRecF[0],
247 TUnfold::kHistMapOutputHoriz,
249 TUnfold::kEConstraintNone,
250 TUnfoldDensity::kDensityModeNone,
253 tunfoldF->SetInput(histDataRecF[0],biasScale);
254 tunfoldF->SubtractBackground(histMcbgrRecF[0],
"BGR",fBgr,0.0);
255 tunfoldF->DoUnfold(0.);
256 histOutputFtau0[0]=tunfoldF->GetOutput(
"histOutputFtau0");
257 histRhoFtau0=tunfoldF->GetRhoIJtotal(
"histRhoFtau0");
258 CreateHistogramCopies(histOutputFtau0,coarseBinning);
259 tunfoldF->ScanLcurve(50,tauMin,tauMax,0);
263 histOutputFLCurve[0]=tunfoldF->GetOutput(
"histOutputFLCurve");
264 tunfoldF->GetRhoIJtotal(
"histRhoFLCurve");
265 CreateHistogramCopies(histOutputFLCurve,coarseBinning);
266 histProbF=tunfoldF->GetProbabilityMatrix(
"histProbF",
";P_T(gen);P_T(rec)");
268 TH1 *histOutputFAtau0[3];
270 TH1 *histOutputFALCurve[3];
271 TH2 *histRhoFALCurve;
272 TH1 *histOutputFArho[3];
275 TSpline *logTauCurvature=0;
277 double tauFA,tauFArho;
279 TUnfoldDensity *tunfoldFA=
280 new TUnfoldDensity(histMcsigGenRecF[0],
281 TUnfold::kHistMapOutputHoriz,
283 TUnfold::kEConstraintArea,
284 TUnfoldDensity::kDensityModeNone,
287 tunfoldFA->SetInput(histDataRecF[0],biasScale);
288 tunfoldFA->SubtractBackground(histMcbgrRecF[0],
"BGR",fBgr,0.0);
289 tunfoldFA->DoUnfold(0.);
290 histOutputFAtau0[0]=tunfoldFA->GetOutput(
"histOutputFAtau0");
291 histRhoFAtau0=tunfoldFA->GetRhoIJtotal(
"histRhoFAtau0");
292 CreateHistogramCopies(histOutputFAtau0,coarseBinning);
293 tunfoldFA->ScanTau(50,tauMin,tauMax,&rhoScan,TUnfoldDensity::kEScanTauRhoAvg);
294 tauFArho=tunfoldFA->GetTau();
295 histOutputFArho[0]=tunfoldFA->GetOutput(
"histOutputFArho");
296 histRhoFArho=tunfoldFA->GetRhoIJtotal(
"histRhoFArho");
297 CreateHistogramCopies(histOutputFArho,coarseBinning);
299 tunfoldFA->ScanLcurve(50,tauMin,tauMax,&lCurve,&logTauX,&logTauY,&logTauCurvature);
300 tauFA=tunfoldFA->GetTau();
301 histOutputFALCurve[0]=tunfoldFA->GetOutput(
"histOutputFALCurve");
302 histRhoFALCurve=tunfoldFA->GetRhoIJtotal(
"histRhoFALCurve");
303 CreateHistogramCopies(histOutputFALCurve,coarseBinning);
310 double widthC=coarseBinning->GetBinSize(histProbC->GetNbinsY()+1);
311 double widthF=fineBinning->GetBinSize(histProbF->GetNbinsY()+1);
313 TH2 *histProbCO=AddOverflowXY(histProbC,widthC,widthC);
314 TH2 *histProbFO=AddOverflowXY(histProbF,widthC,widthF);
317 TH1 *histEfficiencyC=histProbCO->ProjectionX(
"histEfficiencyC");
318 kNbinC=histProbCO->GetNbinsX();
322 TH1 *histMcsigRecCO=AddOverflowX(histMcsigRecC[2],widthC);
323 TH1 *histMcbgrRecCO=AddOverflowX(histMcbgrRecC[2],widthC);
324 histMcbgrRecCO->Scale(fBgr);
325 TH1 *histMcRecCO=(TH1 *)histMcsigRecCO->Clone(
"histMcRecC0");
326 histMcRecCO->Add(histMcsigRecCO,histMcbgrRecCO);
327 TH1 *histDataRecCO=AddOverflowX(histDataRecC[2],widthC);
330 TH1 *histMcsigRecFO=AddOverflowX(histMcsigRecF[2],widthF);
331 TH1 *histMcbgrRecFO=AddOverflowX(histMcbgrRecF[2],widthF);
332 histMcbgrRecFO->Scale(fBgr);
333 TH1 *histMcRecFO=(TH1 *)histMcsigRecFO->Clone(
"histMcRecF0");
334 histMcRecFO->Add(histMcsigRecFO,histMcbgrRecFO);
335 TH1 *histDataRecFO=AddOverflowX(histDataRecF[2],widthF);
338 TH1 *histMcsigGenO=AddOverflowX(histMcsigGen[2],widthC);
339 TH1 *histDataGenO=AddOverflowX(histDataGen[2],widthC);
342 TH1 *histOutputCtau0O=AddOverflowX(histOutputCtau0[2],widthC);
343 TH2 *histRhoCtau0O=AddOverflowXY(histRhoCtau0,widthC,widthC);
346 TH1 *histOutputFtau0O=AddOverflowX(histOutputFtau0[2],widthC);
347 TH2 *histRhoFtau0O=AddOverflowXY(histRhoFtau0,widthC,widthC);
348 TH1 *histOutputFAtau0O=AddOverflowX(histOutputFAtau0[2],widthC);
349 TH2 *histRhoFAtau0O=AddOverflowXY(histRhoFAtau0,widthC,widthC);
352 TH1 *histOutputFALCurveO=AddOverflowX(histOutputFALCurve[2],widthC);
353 TH2 *histRhoFALCurveO=AddOverflowXY(histRhoFALCurve,widthC,widthC);
354 TH1 *histOutputFArhoO=AddOverflowX(histOutputFArho[2],widthC);
355 TH2 *histRhoFArhoO=AddOverflowXY(histRhoFArho,widthC,widthC);
358 TH2 *histRhoBBBO=(TH2 *)histRhoCtau0O->Clone(
"histRhoBBBO");
359 for(
int i=1;i<=histRhoBBBO->GetNbinsX();i++) {
360 for(
int j=1;j<=histRhoBBBO->GetNbinsX();j++) {
361 histRhoBBBO->SetBinContent(i,j,(i==j)?1.:0.);
364 TH1 *histDataBgrsub=(TH1 *)histDataRecCO->Clone(
"histDataBgrsub");
365 histDataBgrsub->Add(histMcbgrRecCO,-fBgr);
366 TH1 *histOutputBBBO=(TH1 *)histDataBgrsub->Clone(
"histOutputBBBO");
367 histOutputBBBO->Divide(histMcsigRecCO);
368 histOutputBBBO->Multiply(histMcsigGenO);
372 cout<<
"maximum number of iterations: "<<niter<<
"\n";
374 vector <TH1 *>histOutputAgo,histOutputAgorep;
375 vector <TH2 *>histRhoAgo,histRhoAgorep;
377 histOutputAgo.push_back((TH1*)histMcsigGenO->Clone(
"histOutputAgo-1"));
378 histOutputAgorep.push_back((TH1*)histMcsigGenO->Clone(
"histOutputAgorep-1"));
379 histRhoAgo.push_back((TH2*)histRhoBBBO->Clone(
"histRhoAgo-1"));
380 histRhoAgorep.push_back((TH2*)histRhoBBBO->Clone(
"histRhoAgorep-1"));
383 int nx=histProbCO->GetNbinsX();
384 int ny=histProbCO->GetNbinsY();
385 TMatrixD covAgo(nx+ny,nx+ny);
387 TMatrixD AToverEps(nx,ny);
388 for(
int i=0;i<nx;i++) {
390 for(
int j=0;j<ny;j++) {
391 epsilonI+= histProbCO->GetBinContent(i+1,j+1);
393 for(
int j=0;j<ny;j++) {
394 double aji=histProbCO->GetBinContent(i+1,j+1);
396 AToverEps(i,j)=aji/epsilonI;
399 for(
int i=0;i<nx;i++) {
400 covAgo(i,i)=TMath::Power
401 (histOutputAgo[0]->GetBinError(i+1)
402 *histOutputAgo[0]->GetXaxis()->GetBinWidth(i+1),2.);
404 for(
int i=0;i<ny;i++) {
405 covAgo(i+nx,i+nx)=TMath::Power
406 (histDataRecCO->GetBinError(i+1)
407 *histDataRecCO->GetXaxis()->GetBinWidth(i+1),2.);
410 vector<TVectorD *> y(NREPLICA);
411 vector<TVectorD *> yMb(NREPLICA);
412 vector<TVectorD *> yErr(NREPLICA);
413 vector<TVectorD *> x(NREPLICA);
415 for(
int nr=0;nr<NREPLICA;nr++) {
416 x[nr]=
new TVectorD(nx);
417 y[nr]=
new TVectorD(ny);
418 yMb[nr]=
new TVectorD(ny);
419 yErr[nr]=
new TVectorD(ny);
421 for(
int i=0;i<nx;i++) {
422 (*x[0])(i)=histOutputAgo[0]->GetBinContent(i+1)
423 *histOutputAgo[0]->GetXaxis()->GetBinWidth(i+1);
424 for(
int nr=1;nr<NREPLICA;nr++) {
425 (*x[nr])(i)=(*x[0])(i);
428 for(
int i=0;i<ny;i++) {
429 (*y[0])(i)=histDataRecCO->GetBinContent(i+1)
430 *histDataRecCO->GetXaxis()->GetBinWidth(i+1);
431 for(
int nr=1;nr<NREPLICA;nr++) {
432 (*y[nr])(i)=g_rnd->Poisson((*y[0])(i));
433 (*yErr[nr])(i)=TMath::Sqrt((*y[nr])(i));
435 b(i)=histMcbgrRecCO->GetBinContent(i+1)*
436 histMcbgrRecCO->GetXaxis()->GetBinWidth(i+1);
437 for(
int nr=0;nr<NREPLICA;nr++) {
438 (*yMb[nr])(i)=(*y[nr])(i)-b(i);
441 for(
int iter=0;iter<=niter;iter++) {
442 if(!(iter %100)) cout<<iter<<
"\n";
443 for(
int nr=0;nr<NREPLICA;nr++) {
444 TVectorD yrec=A*(*x[nr])+b;
445 TVectorD yOverYrec(ny);
446 for(
int j=0;j<ny;j++) {
447 yOverYrec(j)=(*y[nr])(j)/yrec(j);
449 TVectorD f=AToverEps * yOverYrec;
451 for(
int i=0;i<nx;i++) {
452 xx(i) = (*x[nr])(i) * f(i);
455 TMatrixD xdf_dr=AToverEps;
456 for(
int i=0;i<nx;i++) {
457 for(
int j=0;j<ny;j++) {
458 xdf_dr(i,j) *= (*x[nr])(i);
461 TMatrixD dr_dxdy(ny,nx+ny);
462 for(
int j=0;j<ny;j++) {
463 dr_dxdy(j,nx+j)=1.0/yrec(j);
464 for(
int i=0;i<nx;i++) {
465 dr_dxdy(j,i)= -yOverYrec(j)/yrec(j)*A(j,i);
468 TMatrixD dxy_dxy(nx+ny,nx+ny);
469 dxy_dxy.SetSub(0,0,xdf_dr*dr_dxdy);
470 for(
int i=0;i<nx;i++) {
473 for(
int i=0;i<ny;i++) {
474 dxy_dxy(nx+i,nx+i) +=1.0;
476 TMatrixD VDT(covAgo,TMatrixD::kMultTranspose,dxy_dxy);
482 ((iter<=100)&&(iter %5==0))||
483 ((iter<=1000)&&(iter %50==0))||
485 nIter.push_back(iter);
486 TH1 * h=(TH1*)histOutputAgo[0]->Clone
487 (TString::Format(
"histOutputAgo%d",iter));
488 histOutputAgo.push_back(h);
489 for(
int i=0;i<nx;i++) {
490 double bw=h->GetXaxis()->GetBinWidth(i+1);
491 h->SetBinContent(i+1,(*x[0])(i)/bw);
492 h->SetBinError(i+1,TMath::Sqrt(covAgo(i,i))/bw);
494 TH2 *h2=(TH2*)histRhoAgo[0]->Clone
495 (TString::Format(
"histRhoAgo%d",iter));
496 histRhoAgo.push_back(h2);
497 for(
int i=0;i<nx;i++) {
498 for(
int j=0;j<nx;j++) {
499 double rho= covAgo(i,j)/TMath::Sqrt(covAgo(i,i)*covAgo(j,j));
500 if((i!=j)&&(TMath::Abs(rho)>=1.0)) {
501 cout<<
"bad error matrix: iter="<<iter<<
"\n";
504 h2->SetBinContent(i+1,j+1,rho);
508 h=(TH1*)histOutputAgo[0]->Clone
509 (TString::Format(
"histOutputAgorep%d",iter));
510 h2=(TH2*)histRhoAgo[0]->Clone
511 (TString::Format(
"histRhoAgorep%d",iter));
512 histOutputAgorep.push_back(h);
513 histRhoAgorep.push_back(h2);
516 double w=1./(NREPLICA-1.);
517 for(
int nr=1;nr<NREPLICA;nr++) {
520 TMatrixD covAgorep(nx,nx);
521 for(
int nr=1;nr<NREPLICA;nr++) {
524 for(
int i=0;i<nx;i++) {
525 dx(i,0)= (*x[nr])(i)-(*x[0])(i);
527 covAgorep += w*TMatrixD(dx,TMatrixD::kMultTranspose,dx);
530 for(
int i=0;i<nx;i++) {
531 double bw=h->GetXaxis()->GetBinWidth(i+1);
532 h->SetBinContent(i+1,(*x[0])(i)/bw);
533 h->SetBinError(i+1,TMath::Sqrt(covAgorep(i,i))/bw);
536 for(
int i=0;i<nx;i++) {
537 for(
int j=0;j<nx;j++) {
538 double rho= covAgorep(i,j)/
539 TMath::Sqrt(covAgorep(i,i)*covAgorep(j,j));
540 if((i!=j)&&(TMath::Abs(rho)>=1.0)) {
541 cout<<
"bad error matrix: iter="<<iter<<
"\n";
544 h2->SetBinContent(i+1,j+1,rho);
553 vector<TVectorD*> unfresIDS(NREPLICA),soustr(NREPLICA);
554 cout<<
"IDS number of iterations: "<<niterIDS<<
"\n";
555 TMatrixD *Am_IDS[NREPLICA];
556 TMatrixD A_IDS(ny,nx);
557 for(
int nr=0;nr<NREPLICA;nr++) {
558 Am_IDS[nr]=
new TMatrixD(ny,nx);
560 for(
int iy=0;iy<ny;iy++) {
561 for(
int ix=0;ix<nx;ix++) {
562 A_IDS(iy,ix)=histMcsigGenRecC[0]->GetBinContent(ix+1,iy+1);
566 Double_t lambdaUmin = 1.0000002;
567 Double_t lambdaMmin = 0.0000001;
568 Double_t lambdaS = 0.000001;
569 double lambdaU=lambdaUmin;
570 double lambdaM=lambdaMmin;
571 vector<TH1 *> histOutputIDS;
572 vector<TH2 *> histRhoIDS;
573 histOutputIDS.push_back((TH1*)histOutputAgo[0]->Clone(
"histOutputIDS-1"));
574 histRhoIDS.push_back((TH2*)histRhoAgo[0]->Clone(
"histRhoIDS-1"));
575 histOutputIDS.push_back((TH1*)histOutputAgo[0]->Clone(
"histOutputIDS0"));
576 histRhoIDS.push_back((TH2*)histRhoAgo[0]->Clone(
"histRhoIDS0"));
577 for(
int iter=1;iter<=niterIDS;iter++) {
578 if(!(iter %10)) cout<<iter<<
"\n";
580 for(
int nr=0;nr<NREPLICA;nr++) {
582 IDSfirst(yMb[nr],yErr[nr],&A_IDS,lambdaL,unfresIDS[nr],soustr[nr]);
584 IDSiterate(yMb[nr],yErr[nr],&A_IDS,Am_IDS[nr],
585 lambdaU,lambdaM,lambdaS,
586 unfresIDS[nr],soustr[nr]);
590 for(ix=0;ix<nIter.size();ix++) {
591 if(nIter[ix]==iter)
break;
593 if(ix<nIter.size()) {
594 TH1 * h=(TH1*)histOutputIDS[0]->Clone
595 (TString::Format(
"histOutputIDS%d",iter));
596 TH2 *h2=(TH2*)histRhoIDS[0]->Clone
597 (TString::Format(
"histRhoIDS%d",iter));
598 histOutputIDS.push_back(h);
599 histRhoIDS.push_back(h2);
601 double w=1./(NREPLICA-1.);
602 for(
int nr=1;nr<NREPLICA;nr++) {
603 mean += w* (*unfresIDS[nr]);
605 TMatrixD covIDSrep(nx,nx);
606 for(
int nr=1;nr<NREPLICA;nr++) {
609 for(
int i=0;i<nx;i++) {
610 dx(i,0)= (*unfresIDS[nr])(i)-(*unfresIDS[0])(i);
612 covIDSrep += w*TMatrixD(dx,TMatrixD::kMultTranspose,dx);
614 for(
int i=0;i<nx;i++) {
615 double bw=h->GetXaxis()->GetBinWidth(i+1);
616 h->SetBinContent(i+1,(*unfresIDS[0])(i)/bw/
617 histEfficiencyC->GetBinContent(i+1));
618 h->SetBinError(i+1,TMath::Sqrt(covIDSrep(i,i))/bw/
619 histEfficiencyC->GetBinContent(i+1));
622 for(
int i=0;i<nx;i++) {
623 for(
int j=0;j<nx;j++) {
624 double rho= covIDSrep(i,j)/
625 TMath::Sqrt(covIDSrep(i,i)*covIDSrep(j,j));
626 if((i!=j)&&(TMath::Abs(rho)>=1.0)) {
627 cout<<
"bad error matrix: iter="<<iter<<
"\n";
630 h2->SetBinContent(i+1,j+1,rho);
639 vector<pair<TF1 *,vector<double> > > table;
641 TCanvas *c1=
new TCanvas(
"c1",
"",600,600);
642 TCanvas *c2sq=
new TCanvas(
"c2sq",
"",600,600);
644 TCanvas *c2w=
new TCanvas(
"c2w",
"",600,300);
646 TCanvas *c4=
new TCanvas(
"c4",
"",600,600);
651 subn[0]=
new TPad(
"subn0",
"",0.,0.5,1.,1.);
653 subn[1]=
new TPad(
"subn1",
"",0.,0.,0.5,0.5);
654 subn[2]=
new TPad(
"subn2",
"",0.5,0.0,1.,0.5);
655 for(
int i=0;i<3;i++) {
656 subn[i]->SetFillStyle(0);
659 TCanvas *c3c=
new TCanvas(
"c3c",
"",600,600);
662 subc[0]=
new TPad(
"sub0",
"",0.,0.5,1.,1.);
664 subc[1]=
new TPad(
"sub1",
"",0.,0.,0.5,0.5);
666 subc[2]=
new TPad(
"sub2",
"",0.5,0.0,1.,0.5);
667 for(
int i=0;i<3;i++) {
668 subc[i]->SetFillStyle(0);
675 DrawPadTruth(histMcsigGenO,histDataGenO,0);
677 DrawPadReco(histMcRecCO,histMcbgrRecCO,histDataRecCO,0,0,0);
678 c2w->SaveAs(
"exampleTR.eps");
683 DrawPadProbability(histProbCO);
685 DrawPadEfficiency(histEfficiencyC);
686 c2w->SaveAs(
"exampleAE.eps");
688 int iFitInversion=table.size();
689 DoFit(histOutputCtau0O,histRhoCtau0O,histDataGenO,
"inversion",table);
693 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputCtau0O,
"inversion",0.,
694 &table[table.size()-1].second);
696 DrawPadCorrelations(histRhoCtau0O,&table);
698 DrawPadReco(histMcRecCO,histMcbgrRecCO,histDataRecCO,
699 histOutputCtau0O,histProbCO,histRhoCtau0O);
700 c3c->SaveAs(
"inversion.eps");
703 DoFit(histOutputFtau0O,histRhoFtau0O,histDataGenO,
"template",table);
707 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFtau0O,
"fit",0.,
708 &table[table.size()-1].second);
710 DrawPadCorrelations(histRhoFtau0O,&table);
712 DrawPadReco(histMcRecFO,histMcbgrRecFO,histDataRecFO,
713 histOutputFtau0O,histProbFO,histRhoFtau0O);
714 c3c->SaveAs(
"template.eps");
716 DoFit(histOutputFAtau0O,histRhoFAtau0O,histDataGenO,
"template+area",table);
720 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFAtau0O,
"fit",0.,
721 &table[table.size()-1].second);
723 DrawPadCorrelations(histRhoFAtau0O,&table);
725 DrawPadReco(histMcRecFO,histMcbgrRecFO,histDataRecFO,
726 histOutputFAtau0O,histProbFO,histRhoFAtau0O);
727 c3c->SaveAs(
"templateA.eps");
729 int iFitFALCurve=table.size();
730 DoFit(histOutputFALCurveO,histRhoFALCurveO,histDataGenO,
"Tikhonov+area",table);
733 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFALCurveO,
"Tikhonov",tauFA,
734 &table[table.size()-1].second);
736 DrawPadCorrelations(histRhoFALCurveO,&table);
738 DrawPadReco(histMcRecFO,histMcbgrRecFO,histDataRecFO,
739 histOutputFALCurveO,histProbFO,histRhoFALCurveO);
740 c3c->SaveAs(
"lcurveFA.eps");
742 int iFitFArho=table.size();
743 DoFit(histOutputFArhoO,histRhoFArhoO,histDataGenO,
"min(rhomax)",table);
746 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFArhoO,
"Tikhonov",tauFArho,
747 &table[table.size()-1].second);
749 DrawPadCorrelations(histRhoFArho,&table);
751 DrawPadReco(histMcRecFO,histMcbgrRecFO,histDataRecFO,
752 histOutputFArhoO,histProbFO,histRhoFArhoO);
753 c3c->SaveAs(
"rhoscanFA.eps");
755 int iFitBinByBin=table.size();
756 DoFit(histOutputBBBO,histRhoBBBO,histDataGenO,
"bin-by-bin",table);
763 DrawPadReco(histMcRecCO,histMcbgrRecCO,histDataRecCO,
764 histOutputBBBO,histProbCO,histRhoBBBO);
766 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputBBBO,
"bin-by-bin",0.,
767 &table[table.size()-1].second);
768 c2sq->SaveAs(
"binbybin.eps");
772 int iAgoFirstFit=table.size();
773 for(
size_t i=1;i<histRhoAgorep.size();i++) {
776 DoFit(histOutputAgorep[i],histRhoAgorep[i],histDataGenO,
777 TString::Format(
"iterative, N=%d",n),table,n);
780 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputAgorep[i],
781 TString::Format(
"iterative N=%d",nIter[i]),0.,
782 isFitted ? &table[table.size()-1].second : 0);
784 DrawPadCorrelations(histRhoAgorep[i],&table);
786 DrawPadReco(histMcRecCO,histMcbgrRecCO,histDataRecCO,
787 histOutputAgorep[i],histProbCO,histRhoAgorep[i]);
788 c3c->SaveAs(TString::Format(
"iterative%d.eps",nIter[i]));
790 int iAgoLastFit=table.size();
793 int iIDSFirstFit=table.size();
797 for(
size_t i=2;i<histRhoIDS.size();i++) {
800 DoFit(histOutputIDS[i],histRhoIDS[i],histDataGenO,
801 TString::Format(
"IDS, N=%d",n),table,n);
804 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputIDS[i],
805 TString::Format(
"IDS N=%d",nIter[i]),0.,
806 isFitted ? &table[table.size()-1].second : 0);
808 DrawPadCorrelations(histRhoIDS[i],&table);
810 DrawPadReco(histMcRecCO,histMcbgrRecCO,histDataRecCO,
811 histOutputIDS[i],histProbCO,histRhoIDS[i]);
812 c3c->SaveAs(TString::Format(
"ids%d.eps",nIter[i]));
814 int iIDSLastFit=table.size();
817 int nfit=table.size();
818 TH1D *fitChindf=
new TH1D(
"fitChindf",
";algorithm;#chi^{2}/NDF",nfit,0,nfit);
819 TH1D *fitNorm=
new TH1D(
"fitNorm",
";algorithm;Landau amplitude [1/GeV]",nfit,0,nfit);
820 TH1D *fitMu=
new TH1D(
"fitMu",
";algorithm;Landau #mu [GeV]",nfit,0,nfit);
821 TH1D *fitSigma=
new TH1D(
"fitSigma",
";algorithm;Landau #sigma [GeV]",nfit,0,nfit);
822 for(
int fit=0;fit<nfit;fit++) {
823 TF1 *f=table[fit].first;
824 vector<double>
const &r=table[fit].second;
825 fitChindf->GetXaxis()->SetBinLabel(fit+1,f->GetName());
826 fitNorm->GetXaxis()->SetBinLabel(fit+1,f->GetName());
827 fitMu->GetXaxis()->SetBinLabel(fit+1,f->GetName());
828 fitSigma->GetXaxis()->SetBinLabel(fit+1,f->GetName());
831 fitChindf->SetBinContent(fit+1,chi2/ndf);
832 fitChindf->SetBinError(fit+1,TMath::Sqrt(2./ndf));
833 fitNorm->SetBinContent(fit+1,f->GetParameter(0));
834 fitNorm->SetBinError(fit+1,f->GetParError(0));
835 fitMu->SetBinContent(fit+1,f->GetParameter(1));
836 fitMu->SetBinError(fit+1,f->GetParError(1));
837 fitSigma->SetBinContent(fit+1,f->GetParameter(2));
838 fitSigma->SetBinError(fit+1,f->GetParError(2));
839 cout<<
"\""<<f->GetName()<<
"\","<<r[2]/r[3]<<
","<<r[3]
840 <<
","<<TMath::Prob(r[2],r[3])
843 <<
","<<TMath::Prob(r[0],r[1])
845 for(
int i=1;i<3;i++) {
846 cout<<
","<<f->GetParameter(i)<<
",\"\302\261\","<<f->GetParError(i);
853 lCurve->SetTitle(
"L curve;log_{10} L_{x};log_{10} L_{y}");
854 lCurve->SetLineColor(kRed);
859 logTauX->SetTitle(
";log_{10} #tau;log_{10} L_{x}");
860 logTauX->SetLineColor(kBlue);
863 logTauY->SetTitle(
";log_{10} #tau;log_{10} L_{y}");
864 logTauY->SetLineColor(kBlue);
866 c4->SaveAs(
"lcurveL.eps");
870 logTauCurvature->SetTitle(
";log_{10}(#tau);L curve curvature");
871 logTauCurvature->SetLineColor(kRed);
872 logTauCurvature->Draw();
874 rhoScan->SetTitle(
";log_{10}(#tau);average(#rho_{i})");
875 rhoScan->SetLineColor(kRed);
878 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFALCurveO,
"Tikhonov",tauFA,
879 &table[iFitFALCurve].second);
881 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFArhoO,
"Tikhonov",tauFArho,
882 &table[iFitFArho].second);
884 c4->SaveAs(
"scanTau.eps");
887 TGraph *graphNiterAgoBay[4];
888 GetNiterGraphs(iAgoFirstFit,iAgoFirstFit+1,table,kRed-2,graphNiterAgoBay,20);
889 TGraph *graphNiterAgo[4];
890 GetNiterGraphs(iAgoFirstFit,iAgoLastFit,table,kRed,graphNiterAgo,24);
892 TGraph *graphNiterIDS[4];
893 GetNiterGraphs(iIDSFirstFit,iIDSLastFit,table,kMagenta,graphNiterIDS,21);
895 TH1 *histNiterInversion[4];
896 GetNiterHist(iFitInversion,table,histNiterInversion,kCyan,1,1001);
897 TH1 *histNiterFALCurve[4];
898 GetNiterHist(iFitFALCurve,table,histNiterFALCurve,kBlue,2,3353);
899 TH1 *histNiterFArho[4];
900 GetNiterHist(iFitFArho,table,histNiterFArho,kAzure-4,3,3353);
901 TH1 *histNiterBinByBin[4];
902 GetNiterHist(iFitBinByBin,table,histNiterBinByBin,kOrange+1,3,3335);
904 histNiterInversion[0]->GetYaxis()->SetRangeUser(0.3,500.);
905 histNiterInversion[1]->GetYaxis()->SetRangeUser(-0.1,0.9);
906 histNiterInversion[2]->GetYaxis()->SetRangeUser(5.6,6.3);
907 histNiterInversion[3]->GetYaxis()->SetRangeUser(1.6,2.4);
911 for(
int i=0;i<2;i++) {
914 gPad->SetLogy((i<1));
915 if(! histNiterInversion[i])
continue;
916 histNiterInversion[i]->Draw(
"][");
917 histNiterFALCurve[i]->Draw(
"SAME ][");
918 histNiterFArho[i]->Draw(
"SAME ][");
919 histNiterBinByBin[i]->Draw(
"SAME ][");
920 graphNiterAgo[i]->Draw(
"LP");
921 graphNiterAgoBay[i]->SetMarkerStyle(20);
922 graphNiterAgoBay[i]->Draw(
"P");
924 graphNiterIDS[i]->Draw(
"LP");
928 legend=
new TLegend(0.48,0.28,0.87,0.63);
930 legend=
new TLegend(0.45,0.5,0.88,0.88);
932 legend->SetBorderSize(0);
933 legend->SetFillStyle(1001);
934 legend->SetFillColor(kWhite);
935 legend->SetTextSize(kLegendFontSize*0.7);
936 legend->AddEntry( histNiterInversion[0],
"inversion",
"l");
937 legend->AddEntry( histNiterFALCurve[0],
"Tikhonov L-curve",
"l");
938 legend->AddEntry( histNiterFArho[0],
"Tikhonov global cor.",
"l");
939 legend->AddEntry( histNiterBinByBin[0],
"bin-by-bin",
"l");
940 legend->AddEntry( graphNiterAgoBay[0],
"\"Bayesian\"",
"p");
941 legend->AddEntry( graphNiterAgo[0],
"iterative",
"p");
943 legend->AddEntry( graphNiterIDS[0],
"IDS",
"p");
947 c1->SaveAs(TString::Format(
"niter%d.eps",i));
953 DrawPadTruth(histMcsigGenO,histDataGenO,histOutputFALCurveO,
"Tikhonov",tauFA,
954 &table[iFitFALCurve].second,table[iFitFALCurve].first);
958 gPad->SetLogy(
false);
959 histNiterInversion[3]->DrawClone(
"E2");
960 histNiterInversion[3]->SetFillStyle(0);
961 histNiterInversion[3]->Draw(
"SAME HIST ][");
962 histNiterFALCurve[3]->DrawClone(
"SAME E2");
963 histNiterFALCurve[3]->SetFillStyle(0);
964 histNiterFALCurve[3]->Draw(
"SAME HIST ][");
965 histNiterFArho[3]->DrawClone(
"SAME E2");
966 histNiterFArho[3]->SetFillStyle(0);
967 histNiterFArho[3]->Draw(
"SAME HIST ][");
968 histNiterBinByBin[3]->DrawClone(
"SAME E2");
969 histNiterBinByBin[3]->SetFillStyle(0);
970 histNiterBinByBin[3]->Draw(
"SAME HIST ][");
972 line=
new TLine(histNiterInversion[3]->GetXaxis()->GetXmin(),
974 histNiterInversion[3]->GetXaxis()->GetXmax(),
976 line->SetLineWidth(3);
979 graphNiterAgo[3]->Draw(
"LP");
980 graphNiterAgoBay[3]->SetMarkerStyle(20);
981 graphNiterAgoBay[3]->Draw(
"P");
983 graphNiterIDS[3]->Draw(
"LP");
987 legend=
new TLegend(0.55,0.53,0.95,0.97);
988 legend->SetBorderSize(0);
989 legend->SetFillStyle(1001);
990 legend->SetFillColor(kWhite);
991 legend->SetTextSize(kLegendFontSize);
992 legend->AddEntry( line,
"truth",
"l");
993 legend->AddEntry( histNiterInversion[3],
"inversion",
"l");
994 legend->AddEntry( histNiterFALCurve[3],
"Tikhonov L-curve",
"l");
995 legend->AddEntry( histNiterFArho[3],
"Tikhonov global cor.",
"l");
996 legend->AddEntry( histNiterBinByBin[3],
"bin-by-bin",
"l");
997 legend->AddEntry( graphNiterAgoBay[3],
"\"Bayesian\"",
"p");
998 legend->AddEntry( graphNiterAgo[3],
"iterative",
"p");
1000 legend->AddEntry( graphNiterIDS[3],
"IDS",
"p");
1004 c2sq->SaveAs(
"fitSigma.eps");
1006 outputFile->Write();
1012 void GetNiterGraphs(
int iFirst,
int iLast,vector<pair<TF1*,
1013 vector<double> > >
const &table,
int color,
1014 TGraph *graph[4],
int style) {
1015 TVectorD niter(iLast-iFirst);
1016 TVectorD eniter(iLast-iFirst);
1017 TVectorD chi2(iLast-iFirst);
1018 TVectorD gcor(iLast-iFirst);
1019 TVectorD mean(iLast-iFirst);
1020 TVectorD emean(iLast-iFirst);
1021 TVectorD sigma(iLast-iFirst);
1022 TVectorD esigma(iLast-iFirst);
1023 for(
int ifit=iFirst;ifit<iLast;ifit++) {
1024 vector<double>
const &r=table[ifit].second;
1025 niter(ifit-iFirst)=r[4];
1026 chi2(ifit-iFirst)=r[2]/r[3];
1027 gcor(ifit-iFirst)=r[5];
1028 TF1
const *f=table[ifit].first;
1029 mean(ifit-iFirst)=f->GetParameter(1);
1030 emean(ifit-iFirst)=f->GetParError(1);
1031 sigma(ifit-iFirst)=f->GetParameter(2);
1032 esigma(ifit-iFirst)=f->GetParError(2);
1034 graph[0]=
new TGraph(niter,chi2);
1035 graph[1]=
new TGraph(niter,gcor);
1036 graph[2]=
new TGraphErrors(niter,mean,eniter,emean);
1037 graph[3]=
new TGraphErrors(niter,sigma,eniter,esigma);
1038 for(
int g=0;g<4;g++) {
1040 graph[g]->SetLineColor(color);
1041 graph[g]->SetMarkerColor(color);
1042 graph[g]->SetMarkerStyle(style);
1047 void GetNiterHist(
int ifit,vector<pair<TF1*,vector<double> > >
const &table,
1048 TH1 *hist[4],
int color,
int style,
int fillStyle) {
1049 vector<double>
const &r=table[ifit].second;
1050 TF1
const *f=table[ifit].first;
1051 hist[0]=
new TH1D(table[ifit].first->GetName()+TString(
"_chi2"),
1052 ";iteration;unfold-truth #chi^{2}/N_{D.F.}",1,0.2,1500.);
1053 hist[0]->SetBinContent(1,r[2]/r[3]);
1055 hist[1]=
new TH1D(table[ifit].first->GetName()+TString(
"_gcor"),
1056 ";iteration;avg(#rho_{i})",1,0.2,1500.);
1057 hist[1]->SetBinContent(1,r[5]);
1058 hist[2]=
new TH1D(table[ifit].first->GetName()+TString(
"_mu"),
1059 ";iteration;parameter #mu",1,0.2,1500.);
1060 hist[2]->SetBinContent(1,f->GetParameter(1));
1061 hist[2]->SetBinError(1,f->GetParError(1));
1062 hist[3]=
new TH1D(table[ifit].first->GetName()+TString(
"_sigma"),
1063 ";iteration;parameter #sigma",1,0.2,1500.);
1064 hist[3]->SetBinContent(1,f->GetParameter(2));
1065 hist[3]->SetBinError(1,f->GetParError(2));
1066 for(
int h=0;h<4;h++) {
1068 hist[h]->SetLineColor(color);
1069 hist[h]->SetLineStyle(style);
1070 if( hist[h]->GetBinError(1)>0.0) {
1071 hist[h]->SetFillColor(color-10);
1072 hist[h]->SetFillStyle(fillStyle);
1074 hist[h]->SetMarkerStyle(0);
1079 void CreateHistogramCopies(TH1 *h[3],TUnfoldBinning
const *binning) {
1080 TString baseName(h[0]->GetName());
1082 h[1]=binning->CreateHistogram(baseName+
"_axis",kTRUE,&binMap);
1083 h[2]=(TH1 *)h[1]->Clone(baseName+
"_binw");
1084 Int_t nMax=binning->GetEndBin()+1;
1085 for(Int_t iSrc=0;iSrc<nMax;iSrc++) {
1086 Int_t iDest=binMap[iSrc];
1087 double c=h[0]->GetBinContent(iSrc)+h[1]->GetBinContent(iDest);
1088 double e=TMath::Hypot(h[0]->GetBinError(iSrc),h[1]->GetBinError(iDest));
1089 h[1]->SetBinContent(iDest,c);
1090 h[1]->SetBinError(iDest,e);
1091 h[2]->SetBinContent(iDest,c);
1092 h[2]->SetBinError(iDest,e);
1094 for(
int iDest=0;iDest<=h[2]->GetNbinsX()+1;iDest++) {
1095 double c=h[2]->GetBinContent(iDest);
1096 double e=h[2]->GetBinError(iDest);
1097 double bw=binning->GetBinSize(iDest);
1103 h[2]->SetBinContent(iDest,c/bw);
1104 h[2]->SetBinError(iDest,e/bw);
1110 void CreateHistogramCopies(TH2 *h[3],TUnfoldBinning
const *binningX) {
1115 TH2 *AddOverflowXY(TH2 *h,
double widthX,
double widthY) {
1117 int nx=h->GetNbinsX();
1118 int ny=h->GetNbinsY();
1119 double *xBins=
new double[nx+2];
1120 double *yBins=
new double[ny+2];
1121 for(
int i=1;i<=nx;i++) {
1122 xBins[i-1]=h->GetXaxis()->GetBinLowEdge(i);
1124 xBins[nx]=h->GetXaxis()->GetBinUpEdge(nx);
1125 xBins[nx+1]=xBins[nx]+widthX;
1126 for(
int i=1;i<=ny;i++) {
1127 yBins[i-1]=h->GetYaxis()->GetBinLowEdge(i);
1129 yBins[ny]=h->GetYaxis()->GetBinUpEdge(ny);
1130 yBins[ny+1]=yBins[ny]+widthY;
1131 TString name(h->GetName());
1133 TH2 *r=
new TH2D(name,h->GetTitle(),nx+1,xBins,ny+1,yBins);
1134 for(
int ix=0;ix<=nx+1;ix++) {
1135 for(
int iy=0;iy<=ny+1;iy++) {
1136 r->SetBinContent(ix,iy,h->GetBinContent(ix,iy));
1137 r->SetBinError(ix,iy,h->GetBinError(ix,iy));
1145 TH1 *AddOverflowX(TH1 *h,
double widthX) {
1147 int nx=h->GetNbinsX();
1148 double *xBins=
new double[nx+2];
1149 for(
int i=1;i<=nx;i++) {
1150 xBins[i-1]=h->GetXaxis()->GetBinLowEdge(i);
1152 xBins[nx]=h->GetXaxis()->GetBinUpEdge(nx);
1153 xBins[nx+1]=xBins[nx]+widthX;
1154 TString name(h->GetName());
1156 TH1 *r=
new TH1D(name,h->GetTitle(),nx+1,xBins);
1157 for(
int ix=0;ix<=nx+1;ix++) {
1158 r->SetBinContent(ix,h->GetBinContent(ix));
1159 r->SetBinError(ix,h->GetBinError(ix));
1165 void DrawOverflowX(TH1 *h,
double posy) {
1166 double x1=h->GetXaxis()->GetBinLowEdge(h->GetNbinsX());
1167 double x2=h->GetXaxis()->GetBinUpEdge(h->GetNbinsX());
1168 double y0=h->GetYaxis()->GetBinLowEdge(1);
1169 double y2=h->GetYaxis()->GetBinUpEdge(h->GetNbinsY());;
1170 if(h->GetDimension()==1) {
1175 TText *textX=
new TText((1.+w1)*x2-w1*x1,(1.-posy)*y0+posy*y2,
"Overflow bin");
1176 textX->SetNDC(kFALSE);
1177 textX->SetTextSize(0.05);
1178 textX->SetTextAngle(90.);
1180 TLine *lineX=
new TLine(x1,y0,x1,y2);
1184 void DrawOverflowY(TH1 *h,
double posx) {
1185 double x0=h->GetXaxis()->GetBinLowEdge(1);
1186 double x2=h->GetXaxis()->GetBinUpEdge(h->GetNbinsX());
1187 double y1=h->GetYaxis()->GetBinLowEdge(h->GetNbinsY());;
1188 double y2=h->GetYaxis()->GetBinUpEdge(h->GetNbinsY());;
1190 TText *textY=
new TText((1.-posx)*x0+posx*x2,(1.+w1)*y1-w1*y2,
"Overflow bin");
1191 textY->SetNDC(kFALSE);
1192 textY->SetTextSize(0.05);
1194 TLine *lineY=
new TLine(x0,y1,x2,y1);
1198 void DrawPadProbability(TH2 *h) {
1200 h->SetTitle(
"migration probabilities;P_{T}(gen) [GeV];P_{T}(rec) [GeV]");
1201 DrawOverflowX(h,0.05);
1202 DrawOverflowY(h,0.35);
1205 void DrawPadEfficiency(TH1 *h) {
1206 h->SetTitle(
"efficiency;P_{T}(gen) [GeV];#epsilon");
1207 h->SetLineColor(kBlue);
1208 h->SetMinimum(0.75);
1211 DrawOverflowX(h,0.05);
1212 TLegend *legEfficiency=
new TLegend(0.3,0.58,0.6,0.75);
1213 legEfficiency->SetBorderSize(0);
1214 legEfficiency->SetFillStyle(0);
1215 legEfficiency->SetTextSize(kLegendFontSize);
1216 legEfficiency->AddEntry(h,
"reconstruction",
"l");
1217 legEfficiency->AddEntry((TObject*)0,
" efficiency",
"");
1218 legEfficiency->Draw();
1221 void DrawPadReco(TH1 *histMcRec,TH1 *histMcbgrRec,TH1 *histDataRec,
1222 TH1 *histDataUnfold,TH2 *histProbability,TH2 *histRhoij) {
1225 for(
int i=1;i<=histMcRec->GetNbinsX();i++) {
1226 amax=TMath::Max(amax,histMcRec->GetBinContent(i)
1227 +5.0*histMcRec->GetBinError(i));
1228 amax=TMath::Max(amax,histDataRec->GetBinContent(i)
1229 +2.0*histDataRec->GetBinError(i));
1231 histMcRec->SetTitle(
"Reconstructed;P_{T}(rec);Nevent / GeV");
1232 histMcRec->Draw(
"HIST");
1233 histMcRec->SetLineColor(kBlue);
1234 histMcRec->SetMinimum(1.0);
1235 histMcRec->SetMaximum(amax);
1237 histMcbgrRec->SetLineColor(kBlue-6);
1238 histMcbgrRec->SetFillColor(kBlue-10);
1239 histMcbgrRec->Draw(
"SAME HIST");
1241 TH1 * histFoldBack=0;
1242 if(histDataUnfold && histProbability && histRhoij) {
1243 histFoldBack=(TH1 *)
1244 histMcRec->Clone(histDataUnfold->GetName()+TString(
"_folded"));
1245 int nrec=histFoldBack->GetNbinsX();
1246 if((nrec==histProbability->GetNbinsY())&&
1247 (nrec==histMcbgrRec->GetNbinsX())&&
1248 (nrec==histDataRec->GetNbinsX())
1250 for(
int ix=1;ix<=nrec;ix++) {
1253 for(
int iy=0;iy<=histProbability->GetNbinsX()+1;iy++) {
1254 sum += histDataUnfold->GetBinContent(iy)*
1255 histDataUnfold->GetBinWidth(iy)*
1256 histProbability->GetBinContent(iy,ix);
1257 for(
int iy2=0;iy2<=histProbability->GetNbinsX()+1;iy2++) {
1258 sume2 += histDataUnfold->GetBinError(iy)*
1259 histDataUnfold->GetBinWidth(iy)*
1260 histProbability->GetBinContent(iy,ix)*
1261 histDataUnfold->GetBinError(iy2)*
1262 histDataUnfold->GetBinWidth(iy2)*
1263 histProbability->GetBinContent(iy2,ix)*
1264 histRhoij->GetBinContent(iy,iy2);
1267 sum /= histFoldBack->GetBinWidth(ix);
1268 sum += histMcbgrRec->GetBinContent(ix);
1269 histFoldBack->SetBinContent(ix,sum);
1270 histFoldBack->SetBinError(ix,TMath::Sqrt(sume2)
1271 /histFoldBack->GetBinWidth(ix));
1274 cout<<
"can not fold back: "<<nrec
1275 <<
" "<<histProbability->GetNbinsY()
1276 <<
" "<<histMcbgrRec->GetNbinsX()
1277 <<
" "<<histDataRec->GetNbinsX()
1282 histFoldBack->SetLineColor(kBlack);
1283 histFoldBack->SetMarkerStyle(0);
1284 histFoldBack->Draw(
"SAME HIST");
1287 histDataRec->SetLineColor(kRed);
1288 histDataRec->SetMarkerColor(kRed);
1289 histDataRec->Draw(
"SAME");
1290 DrawOverflowX(histMcRec,0.5);
1292 TLegend *legRec=
new TLegend(0.4,0.5,0.68,0.85);
1293 legRec->SetBorderSize(0);
1294 legRec->SetFillStyle(0);
1295 legRec->SetTextSize(kLegendFontSize);
1296 legRec->AddEntry(histMcRec,
"MC total",
"l");
1297 legRec->AddEntry(histMcbgrRec,
"background",
"f");
1300 double sumD=0.,sumF=0.,chi2=0.;
1301 for(
int i=1;i<=histDataRec->GetNbinsX();i++) {
1303 sumD+=histDataRec->GetBinContent(i)*histDataRec->GetBinWidth(i);
1304 sumF+=histFoldBack->GetBinContent(i)*histFoldBack->GetBinWidth(i);
1305 double pull=(histFoldBack->GetBinContent(i)-histDataRec->GetBinContent(i))/histDataRec->GetBinError(i);
1309 legRec->AddEntry(histDataRec,TString::Format(
"data N_{evt}=%.0f",sumD),
"lp");
1310 legRec->AddEntry(histFoldBack,TString::Format(
"folded N_{evt}=%.0f",sumF),
"l");
1311 legRec->AddEntry((TObject*)0,TString::Format(
"#chi^{2}=%.1f ndf=%d",chi2,ndf),
"");
1314 legRec->AddEntry(histDataRec,
"data",
"lp");
1319 void DrawPadTruth(TH1 *histMcsigGen,TH1 *histDataGen,TH1 *histDataUnfold,
1320 char const *text,
double tau,vector<double>
const *r,
1325 for(
int i=1;i<=histMcsigGen->GetNbinsX();i++) {
1326 if(histDataUnfold) {
1327 amin=TMath::Min(amin,histDataUnfold->GetBinContent(i)
1328 -1.1*histDataUnfold->GetBinError(i));
1329 amax=TMath::Max(amax,histDataUnfold->GetBinContent(i)
1330 +1.1*histDataUnfold->GetBinError(i));
1332 amin=TMath::Min(amin,histMcsigGen->GetBinContent(i)
1333 -histMcsigGen->GetBinError(i));
1334 amin=TMath::Min(amin,histDataGen->GetBinContent(i)
1335 -histDataGen->GetBinError(i));
1336 amax=TMath::Max(amax,histMcsigGen->GetBinContent(i)
1337 +10.*histMcsigGen->GetBinError(i));
1338 amax=TMath::Max(amax,histDataGen->GetBinContent(i)
1339 +2.*histDataGen->GetBinError(i));
1341 histMcsigGen->SetMinimum(amin);
1342 histMcsigGen->SetMaximum(amax);
1344 histMcsigGen->SetTitle(
"Truth;P_{T};Nevent / GeV");
1345 histMcsigGen->SetLineColor(kBlue);
1346 histMcsigGen->Draw(
"HIST");
1347 histDataGen->SetLineColor(kRed);
1348 histDataGen->SetMarkerColor(kRed);
1349 histDataGen->SetMarkerSize(1.0);
1350 histDataGen->Draw(
"SAME HIST");
1351 if(histDataUnfold) {
1352 histDataUnfold->SetMarkerStyle(21);
1353 histDataUnfold->SetMarkerSize(0.7);
1354 histDataUnfold->Draw(
"SAME");
1356 DrawOverflowX(histMcsigGen,0.5);
1363 TLegend *legTruth=
new TLegend(0.32,0.65,0.6,0.9);
1364 legTruth->SetBorderSize(0);
1365 legTruth->SetFillStyle(0);
1366 legTruth->SetTextSize(kLegendFontSize);
1367 legTruth->AddEntry(histMcsigGen,
"MC",
"l");
1368 if(!histDataUnfold) legTruth->AddEntry((TObject *)0,
" Landau(5,2)",
"");
1369 legTruth->AddEntry(histDataGen,
"data",
"l");
1370 if(!histDataUnfold) legTruth->AddEntry((TObject *)0,
" Landau(6,1.8)",
"");
1371 if(histDataUnfold) {
1374 else t=histDataUnfold->GetName();
1376 t+=TString::Format(
" #tau=%.2g",tau);
1378 legTruth->AddEntry(histDataUnfold,t,
"lp");
1380 legTruth->AddEntry((TObject *)0,
"test wrt data:",
"");
1381 legTruth->AddEntry((TObject *)0,TString::Format
1382 (
"#chi^{2}/%d=%.1f prob=%.3f",
1383 (
int)(*r)[3],(*r)[2]/(*r)[3],
1384 TMath::Prob((*r)[2],(*r)[3])),
"");
1388 legTruth->AddEntry(f,
"fit",
"l");
1391 if(histDataUnfold ) {
1392 TPad *subpad =
new TPad(
"subpad",
"",0.35,0.29,0.88,0.68);
1393 subpad->SetFillStyle(0);
1399 for(
int i=istart;i<=histMcsigGen->GetNbinsX();i++) {
1400 amin=TMath::Min(amin,histMcsigGen->GetBinContent(i)
1401 -histMcsigGen->GetBinError(i));
1402 amin=TMath::Min(amin,histDataGen->GetBinContent(i)
1403 -histDataGen->GetBinError(i));
1404 amin=TMath::Min(amin,histDataUnfold->GetBinContent(i)
1405 -histDataUnfold->GetBinError(i));
1406 amax=TMath::Max(amax,histMcsigGen->GetBinContent(i)
1407 +histMcsigGen->GetBinError(i));
1408 amax=TMath::Max(amax,histDataGen->GetBinContent(i)
1409 +histDataGen->GetBinError(i));
1410 amax=TMath::Max(amax,histDataUnfold->GetBinContent(i)
1411 +histDataUnfold->GetBinError(i));
1413 TH1 *copyMcsigGen=(TH1*)histMcsigGen->Clone();
1414 TH1 *copyDataGen=(TH1*)histDataGen->Clone();
1415 TH1 *copyDataUnfold=(TH1*)histDataUnfold->Clone();
1416 copyMcsigGen->GetXaxis()->SetRangeUser
1417 (copyMcsigGen->GetXaxis()->GetBinLowEdge(istart),
1418 copyMcsigGen->GetXaxis()->GetBinUpEdge(copyMcsigGen->GetNbinsX()-1));
1419 copyMcsigGen->SetTitle(
";;");
1420 copyMcsigGen->GetYaxis()->SetRangeUser(amin,amax);
1421 copyMcsigGen->Draw(
"HIST");
1422 copyDataGen->Draw(
"SAME HIST");
1423 copyDataUnfold->Draw(
"SAME");
1425 ((TF1 *)f->Clone())->Draw(
"SAME");
1430 void DrawPadCorrelations(TH2 *h,
1431 vector<pair<TF1*,vector<double> > >
const *table) {
1434 h->SetTitle(
"correlation coefficients;P_{T}(gen) [GeV];P_{T}(gen) [GeV]");
1436 DrawOverflowX(h,0.05);
1437 DrawOverflowY(h,0.05);
1439 TLegend *legGCor=
new TLegend(0.13,0.6,0.5,0.8);
1440 legGCor->SetBorderSize(0);
1441 legGCor->SetFillStyle(0);
1442 legGCor->SetTextSize(kLegendFontSize);
1443 vector<double>
const &r=(*table)[table->size()-1].second;
1444 legGCor->AddEntry((TObject *)0,TString::Format(
"min(#rho_{ij})=%5.2f",r[6]),
"");
1445 legGCor->AddEntry((TObject *)0,TString::Format(
"max(#rho_{ij})=%5.2f",r[7]),
"");
1446 legGCor->AddEntry((TObject *)0,TString::Format(
"avg(#rho_i)=%5.2f",r[5]),
"");
1452 TMatrixD *g_fcnMatrix=0;
1454 void fcn(Int_t &npar, Double_t *gin, Double_t &f, Double_t *u, Int_t flag) {
1456 cout<<
"fcn flag=0: npar="<<npar<<
" gin="<<gin<<
" par=[";
1457 for(
int i=0;i<npar;i++) {
1462 int n=g_fcnMatrix->GetNrows();
1465 for(
int i=0;i<=n;i++) {
1467 if(i<1) x1=g_fcnHist->GetXaxis()->GetBinLowEdge(i+1);
1468 else x1=g_fcnHist->GetXaxis()->GetBinUpEdge(i);
1469 double y1=TMath::LandauI((x1-u[1])/u[2]);
1471 double iy=u[0]*u[2]*(y1-y0)/(x1-x0);
1472 dy(i-1)=iy-g_fcnHist->GetBinContent(i);
1479 TVectorD Hdy=(*g_fcnMatrix) * dy;
1486 TFitResultPtr DoFit(TH1 *h,TH2 *rho,TH1 *truth,
const char *text,
1487 vector<pair<TF1 *,vector<double> > > &table,
int niter) {
1488 TString option=
"IESN";
1489 cout<<h->GetName()<<
"\n";
1495 int n=h->GetNbinsX()-1;
1498 for(
int i=0;i<n;i++) {
1499 for(
int j=0;j<n;j++) {
1500 v(i,j)=rho->GetBinContent(i+1,j+1)*
1501 (h->GetBinError(i+1)*h->GetBinError(j+1));
1504 TMatrixDSymEigen ev(v);
1506 TVectorD di(ev.GetEigenValues());
1507 for(
int i=0;i<n;i++) {
1511 cout<<
"bad eigenvalue i="<<i<<
" di="<<di(i)<<
"\n";
1515 TMatrixD O(ev.GetEigenVectors());
1516 TMatrixD DOT(d,TMatrixD::kMultTranspose,O);
1517 g_fcnMatrix=
new TMatrixD(O,TMatrixD::kMult,DOT);
1518 TMatrixD test(*g_fcnMatrix,TMatrixD::kMult,v);
1520 for(
int i=0;i<n;i++) {
1521 if(TMath::Abs(test(i,i)-1.0)>1.E-7) {
1524 for(
int j=0;j<n;j++) {
1526 if(TMath::Abs(test(i,j)>1.E-7)) error++;
1530 TMatrixDSym v1(n+1);
1533 for(
int i=0;i<=n;i++) {
1534 for(
int j=0;j<=n;j++) {
1535 double rho_ij=rho->GetBinContent(i+1,j+1);
1537 (h->GetBinError(i+1)*h->GetBinError(j+1));
1539 if(rho_ij<rhoMin) rhoMin=rho_ij;
1540 if(rho_ij>rhoMax) rhoMax=rho_ij;
1544 TMatrixDSymEigen ev1(v1);
1545 TMatrixD d1(n+1,n+1);
1546 TVectorD di1(ev1.GetEigenValues());
1547 for(
int i=0;i<=n;i++) {
1551 cout<<
"bad eigenvalue i="<<i<<
" di1="<<di1(i)<<
"\n";
1555 TMatrixD O1(ev1.GetEigenVectors());
1556 TMatrixD DOT1(d1,TMatrixD::kMultTranspose,O1);
1557 TMatrixD vinv1(O1,TMatrixD::kMult,DOT1);
1558 for(
int i=0;i<=n;i++) {
1559 double gcor2=1.-1./(vinv1(i,i)*v1(i,i));
1561 double gcor=TMath::Sqrt(gcor2);
1564 cout<<
"bad global correlation "<<i<<
" "<<gcor2<<
"\n";
1582 TVirtualFitter::Fitter(h)->SetFCN(fcn);
1586 double xmax=h->GetXaxis()->GetBinUpEdge(h->GetNbinsX()-1);
1587 TF1 *landau=
new TF1(text,
"[0]*TMath::Landau(x,[1],[2],0)",
1589 landau->SetParameter(0,6000.);
1590 landau->SetParameter(1,5.);
1591 landau->SetParameter(2,2.);
1592 landau->SetParError(0,10.);
1593 landau->SetParError(1,0.5);
1594 landau->SetParError(2,0.1);
1595 TFitResultPtr s=h->Fit(landau,option,0,0.,xmax);
1596 vector<double> r(8);
1597 int np=landau->GetNpar();
1598 fcn(np,0,r[0],landau->GetParameters(),0);
1599 r[1]=h->GetNbinsX()-1-landau->GetNpar();
1600 for(
int i=0;i<h->GetNbinsX()-1;i++) {
1601 double di=h->GetBinContent(i+1)-truth->GetBinContent(i+1);
1603 for(
int j=0;j<h->GetNbinsX()-1;j++) {
1604 double dj=h->GetBinContent(j+1)-truth->GetBinContent(j+1);
1605 r[2]+=di*dj*(*g_fcnMatrix)(i,j);
1608 double pull=di/h->GetBinError(i+1);
1614 if(!niter) r[4]=0.25;
1623 table.push_back(make_pair(landau,r));
1632 #include "ids_code.cc"
1634 void IDSfirst(TVectorD *data, TVectorD *dataErr, TMatrixD *A_, Double_t lambdaL_, TVectorD* &unfres1IDS_,TVectorD *&soustr){
1636 int N_=data->GetNrows();
1637 soustr =
new TVectorD(N_);
1638 for( Int_t i=0; i<N_; i++ ){ (*soustr)[i] = 0.; }
1639 unfres1IDS_ = Unfold( data, dataErr, A_, N_, lambdaL_, soustr );
1642 void IDSiterate(TVectorD *data, TVectorD *dataErr, TMatrixD *A_, TMatrixD *Am_, Double_t lambdaU_, Double_t lambdaM_, Double_t lambdaS_,TVectorD* &unfres2IDS_ ,TVectorD *&soustr) {
1644 int N_=data->GetNrows();
1645 ModifyMatrix( Am_, A_, unfres2IDS_, dataErr, N_, lambdaM_, soustr, lambdaS_ );
1647 unfres2IDS_ = Unfold( data, dataErr, Am_, N_, lambdaU_, soustr );