Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
rf707_kernelestimation.py
Go to the documentation of this file.
1 ## \file
2 ## \ingroup tutorial_roofit
3 ## \notebook
4 ##
5 ## Special p.d.f.'s: using non-parametric (multi-dimensional) kernel estimation p.d.f.s
6 ##
7 ## \macro_code
8 ##
9 ## \date February 2018
10 ## \author Clemens Lange, Wouter Verkerke (C++ version)
11 
12 import ROOT
13 
14 
15 # Create low stats 1D dataset
16 # -------------------------------------------------------
17 
18 # Create a toy pdf for sampling
19 x = ROOT.RooRealVar("x", "x", 0, 20)
20 p = ROOT.RooPolynomial("p", "p", x, ROOT.RooArgList(ROOT.RooFit.RooConst(
21  0.01), ROOT.RooFit.RooConst(-0.01), ROOT.RooFit.RooConst(0.0004)))
22 
23 # Sample 500 events from p
24 data1 = p.generate(ROOT.RooArgSet(x), 200)
25 
26 # Create 1D kernel estimation pdf
27 # ---------------------------------------------------------------
28 
29 # Create adaptive kernel estimation pdf. In self configuration the input data
30 # is mirrored over the boundaries to minimize edge effects in distribution
31 # that do not fall to zero towards the edges
32 kest1 = ROOT.RooKeysPdf("kest1", "kest1", x, data1,
33  ROOT.RooKeysPdf.MirrorBoth)
34 
35 # An adaptive kernel estimation pdf on the same data without mirroring option
36 # for comparison
37 kest2 = ROOT.RooKeysPdf("kest2", "kest2", x, data1,
38  ROOT.RooKeysPdf.NoMirror)
39 
40 # Adaptive kernel estimation pdf with increased bandwidth scale factor
41 # (promotes smoothness over detail preservation)
42 kest3 = ROOT.RooKeysPdf("kest1", "kest1", x, data1,
43  ROOT.RooKeysPdf.MirrorBoth, 2)
44 
45 # Plot kernel estimation pdfs with and without mirroring over data
46 frame = x.frame(
47  ROOT.RooFit.Title("Adaptive kernel estimation pdf with and w/o mirroring"),
48  ROOT.RooFit.Bins(20))
49 data1.plotOn(frame)
50 kest1.plotOn(frame)
51 kest2.plotOn(frame, ROOT.RooFit.LineStyle(
52  ROOT.kDashed), ROOT.RooFit.LineColor(ROOT.kRed))
53 
54 # Plot kernel estimation pdfs with regular and increased bandwidth
55 frame2 = x.frame(ROOT.RooFit.Title(
56  "Adaptive kernel estimation pdf with regular, bandwidth"))
57 kest1.plotOn(frame2)
58 kest3.plotOn(frame2, ROOT.RooFit.LineColor(ROOT.kMagenta))
59 
60 # Create low status 2D dataset
61 # -------------------------------------------------------
62 
63 # Construct a 2D toy pdf for sampleing
64 y = ROOT.RooRealVar("y", "y", 0, 20)
65 py = ROOT.RooPolynomial("py", "py", y, ROOT.RooArgList(ROOT.RooFit.RooConst(
66  0.01), ROOT.RooFit.RooConst(0.01), ROOT.RooFit.RooConst(-0.0004)))
67 pxy = ROOT.RooProdPdf("pxy", "pxy", ROOT.RooArgList(p, py))
68 data2 = pxy.generate(ROOT.RooArgSet(x, y), 1000)
69 
70 # Create 2D kernel estimation pdf
71 # ---------------------------------------------------------------
72 
73 # Create 2D adaptive kernel estimation pdf with mirroring
74 kest4 = ROOT.RooNDKeysPdf("kest4", "kest4", ROOT.RooArgList(x, y), data2, "am")
75 
76 # Create 2D adaptive kernel estimation pdf with mirroring and double
77 # bandwidth
78 kest5 = ROOT.RooNDKeysPdf(
79  "kest5", "kest5", ROOT.RooArgList(
80  x, y), data2, "am", 2)
81 
82 # Create a histogram of the data
83 hh_data = ROOT.RooAbsData.createHistogram(
84  data2, "hh_data", x, ROOT.RooFit.Binning(10), ROOT.RooFit.YVar(
85  y, ROOT.RooFit.Binning(10)))
86 
87 # Create histogram of the 2d kernel estimation pdfs
88 hh_pdf = kest4.createHistogram("hh_pdf", x, ROOT.RooFit.Binning(
89  25), ROOT.RooFit.YVar(y, ROOT.RooFit.Binning(25)))
90 hh_pdf2 = kest5.createHistogram("hh_pdf2", x, ROOT.RooFit.Binning(
91  25), ROOT.RooFit.YVar(y, ROOT.RooFit.Binning(25)))
92 hh_pdf.SetLineColor(ROOT.kBlue)
93 hh_pdf2.SetLineColor(ROOT.kMagenta)
94 
95 c = ROOT.TCanvas("rf707_kernelestimation",
96  "rf707_kernelestimation", 800, 800)
97 c.Divide(2, 2)
98 c.cd(1)
99 ROOT.gPad.SetLeftMargin(0.15)
100 frame.GetYaxis().SetTitleOffset(1.4)
101 frame.Draw()
102 c.cd(2)
103 ROOT.gPad.SetLeftMargin(0.15)
104 frame2.GetYaxis().SetTitleOffset(1.8)
105 frame2.Draw()
106 c.cd(3)
107 ROOT.gPad.SetLeftMargin(0.15)
108 hh_data.GetZaxis().SetTitleOffset(1.4)
109 hh_data.Draw("lego")
110 c.cd(4)
111 ROOT.gPad.SetLeftMargin(0.20)
112 hh_pdf.GetZaxis().SetTitleOffset(2.4)
113 hh_pdf.Draw("surf")
114 hh_pdf2.Draw("surfsame")
115 
116 c.SaveAs("rf707_kernelestimation.png")