Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
rf607_fitresult.py
Go to the documentation of this file.
1 ## \file
2 ## \ingroup tutorial_roofit
3 ## \notebook
4 ##
5 ## Likelihood and minimization: demonstration of options of the RooFitResult class
6 ##
7 ## \macro_code
8 ##
9 ## \date February 2018
10 ## \author Clemens Lange, Wouter Verkerke (C++ version)
11 
12 from __future__ import print_function
13 import ROOT
14 
15 
16 # Create pdf, data
17 # --------------------------------
18 
19 # Declare observable x
20 x = ROOT.RooRealVar("x", "x", 0, 10)
21 
22 # Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and
23 # their parameters
24 mean = ROOT.RooRealVar("mean", "mean of gaussians", 5, -10, 10)
25 sigma1 = ROOT.RooRealVar("sigma1", "width of gaussians", 0.5, 0.1, 10)
26 sigma2 = ROOT.RooRealVar("sigma2", "width of gaussians", 1, 0.1, 10)
27 
28 sig1 = ROOT.RooGaussian("sig1", "Signal component 1", x, mean, sigma1)
29 sig2 = ROOT.RooGaussian("sig2", "Signal component 2", x, mean, sigma2)
30 
31 # Build Chebychev polynomial p.d.f.
32 a0 = ROOT.RooRealVar("a0", "a0", 0.5, 0., 1.)
33 a1 = ROOT.RooRealVar("a1", "a1", -0.2)
34 bkg = ROOT.RooChebychev("bkg", "Background", x, ROOT.RooArgList(a0, a1))
35 
36 # Sum the signal components into a composite signal p.d.f.
37 sig1frac = ROOT.RooRealVar(
38  "sig1frac", "fraction of component 1 in signal", 0.8, 0., 1.)
39 sig = ROOT.RooAddPdf(
40  "sig", "Signal", ROOT.RooArgList(sig1, sig2), ROOT.RooArgList(sig1frac))
41 
42 # Sum the composite signal and background
43 bkgfrac = ROOT.RooRealVar("bkgfrac", "fraction of background", 0.5, 0., 1.)
44 model = ROOT.RooAddPdf(
45  "model", "g1+g2+a", ROOT.RooArgList(bkg, sig), ROOT.RooArgList(bkgfrac))
46 
47 # Generate 1000 events
48 data = model.generate(ROOT.RooArgSet(x), 1000)
49 
50 # Fit pdf to data, save fit result
51 # -------------------------------------------------------------
52 
53 # Perform fit and save result
54 r = model.fitTo(data, ROOT.RooFit.Save())
55 
56 # Print fit results
57 # ---------------------------------
58 
59 # Summary printing: Basic info plus final values of floating fit parameters
60 r.Print()
61 
62 # Verbose printing: Basic info, of constant parameters, and
63 # final values of floating parameters, correlations
64 r.Print("v")
65 
66 # Visualize correlation matrix
67 # -------------------------------------------------------
68 
69 # Construct 2D color plot of correlation matrix
70 ROOT.gStyle.SetOptStat(0)
71 ROOT.gStyle.SetPalette(1)
72 hcorr = r.correlationHist()
73 
74 # Visualize ellipse corresponding to single correlation matrix element
75 frame = ROOT.RooPlot(sigma1, sig1frac, 0.45, 0.60, 0.65, 0.90)
76 frame.SetTitle("Covariance between sigma1 and sig1frac")
77 r.plotOn(frame, sigma1, sig1frac, "ME12ABHV")
78 
79 # Access fit result information
80 # ---------------------------------------------------------
81 
82 # Access basic information
83 print("EDM = ", r.edm())
84 print("-log(L) minimum = ", r.minNll())
85 
86 # Access list of final fit parameter values
87 print("final value of floating parameters")
88 r.floatParsFinal().Print("s")
89 
90 # Access correlation matrix elements
91 print("correlation between sig1frac and a0 is ", r.correlation(
92  sig1frac, a0))
93 print("correlation between bkgfrac and mean is ", r.correlation(
94  "bkgfrac", "mean"))
95 
96 # Extract covariance and correlation matrix as ROOT.TMatrixDSym
97 cor = r.correlationMatrix()
98 cov = r.covarianceMatrix()
99 
100 # Print correlation, matrix
101 print("correlation matrix")
102 cor.Print()
103 print("covariance matrix")
104 cov.Print()
105 
106 # Persist fit result in root file
107 # -------------------------------------------------------------
108 
109 # Open ROOT file save save result
110 f = ROOT.TFile("rf607_fitresult.root", "RECREATE")
111 r.Write("rf607")
112 f.Close()
113 
114 # In a clean ROOT session retrieve the persisted fit result as follows:
115 # r = gDirectory.Get("rf607")
116 
117 c = ROOT.TCanvas("rf607_fitresult", "rf607_fitresult", 800, 400)
118 c.Divide(2)
119 c.cd(1)
120 ROOT.gPad.SetLeftMargin(0.15)
121 hcorr.GetYaxis().SetTitleOffset(1.4)
122 hcorr.Draw("colz")
123 c.cd(2)
124 ROOT.gPad.SetLeftMargin(0.15)
125 frame.GetYaxis().SetTitleOffset(1.6)
126 frame.Draw()
127 
128 c.SaveAs("rf607_fitresult.png")