Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
rf603_multicpu.py
Go to the documentation of this file.
1 ## \file
2 ## \ingroup tutorial_roofit
3 ## \notebook
4 ##
5 ## Likelihood and minimization: setting up a multi-core parallelized unbinned maximum likelihood fit
6 ##
7 ## \macro_code
8 ##
9 ## \date February 2018
10 ## \author Clemens Lange, Wouter Verkerke (C++ version)
11 
12 import ROOT
13 
14 
15 # Create 3D pdf and data
16 # -------------------------------------------
17 
18 # Create observables
19 x = ROOT.RooRealVar("x", "x", -5, 5)
20 y = ROOT.RooRealVar("y", "y", -5, 5)
21 z = ROOT.RooRealVar("z", "z", -5, 5)
22 
23 # Create signal pdf gauss(x)*gauss(y)*gauss(z)
24 gx = ROOT.RooGaussian(
25  "gx", "gx", x, ROOT.RooFit.RooConst(0), ROOT.RooFit.RooConst(1))
26 gy = ROOT.RooGaussian(
27  "gy", "gy", y, ROOT.RooFit.RooConst(0), ROOT.RooFit.RooConst(1))
28 gz = ROOT.RooGaussian(
29  "gz", "gz", z, ROOT.RooFit.RooConst(0), ROOT.RooFit.RooConst(1))
30 sig = ROOT.RooProdPdf("sig", "sig", ROOT.RooArgList(gx, gy, gz))
31 
32 # Create background pdf poly(x)*poly(y)*poly(z)
33 px = ROOT.RooPolynomial("px", "px", x, ROOT.RooArgList(
34  ROOT.RooFit.RooConst(-0.1), ROOT.RooFit.RooConst(0.004)))
35 py = ROOT.RooPolynomial("py", "py", y, ROOT.RooArgList(
36  ROOT.RooFit.RooConst(0.1), ROOT.RooFit.RooConst(-0.004)))
37 pz = ROOT.RooPolynomial("pz", "pz", z)
38 bkg = ROOT.RooProdPdf("bkg", "bkg", ROOT.RooArgList(px, py, pz))
39 
40 # Create composite pdf sig+bkg
41 fsig = ROOT.RooRealVar("fsig", "signal fraction", 0.1, 0., 1.)
42 model = ROOT.RooAddPdf("model", "model", ROOT.RooArgList(
43  sig, bkg), ROOT.RooArgList(fsig))
44 
45 # Generate large dataset
46 data = model.generate(ROOT.RooArgSet(x, y, z), 200000)
47 
48 # Parallel fitting
49 # -------------------------------
50 
51 # In parallel mode the likelihood calculation is split in N pieces,
52 # that are calculated in parallel and added a posteriori before passing
53 # it back to MINUIT.
54 
55 # Use four processes and time results both in wall time and CPU time
56 model.fitTo(data, ROOT.RooFit.NumCPU(4), ROOT.RooFit.Timer(ROOT.kTRUE))
57 
58 # Parallel MC projections
59 # ----------------------------------------------
60 
61 # Construct signal, likelihood projection on (y,z) observables and
62 # likelihood ratio
63 sigyz = sig.createProjection(ROOT.RooArgSet(x))
64 totyz = model.createProjection(ROOT.RooArgSet(x))
65 llratio_func = ROOT.RooFormulaVar(
66  "llratio", "log10(@0)-log10(@1)", ROOT.RooArgList(sigyz, totyz))
67 
68 # Calculate likelihood ratio for each event, subset of events with high
69 # signal likelihood
70 data.addColumn(llratio_func)
71 dataSel = data.reduce(ROOT.RooFit.Cut("llratio>0.7"))
72 
73 # Make plot frame and plot data
74 frame = x.frame(ROOT.RooFit.Title(
75  "Projection on X with LLratio(y,z)>0.7"), ROOT.RooFit.Bins(40))
76 dataSel.plotOn(frame)
77 
78 # Perform parallel projection using MC integration of pdf using given input dataSet.
79 # In self mode the data-weighted average of the pdf is calculated by splitting the
80 # input dataset in N equal pieces and calculating in parallel the weighted average
81 # one each subset. The N results of those calculations are then weighted into the
82 # final result
83 
84 # Use four processes
85 model.plotOn(frame, ROOT.RooFit.ProjWData(dataSel), ROOT.RooFit.NumCPU(4))
86 
87 c = ROOT.TCanvas("rf603_multicpu", "rf603_multicpu", 600, 600)
88 ROOT.gPad.SetLeftMargin(0.15)
89 frame.GetYaxis().SetTitleOffset(1.6)
90 frame.Draw()
91 
92 c.SaveAs("rf603_multicpu.png")