Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
rf501_simultaneouspdf.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_roofit
3 /// \notebook -js
4 /// Organisation and simultaneous fits: using simultaneous p.d.f.s to describe simultaneous fits to multiple datasets
5 ///
6 /// \macro_image
7 /// \macro_output
8 /// \macro_code
9 /// \author 07/2008 - Wouter Verkerke
10 
11 #include "RooRealVar.h"
12 #include "RooDataSet.h"
13 #include "RooGaussian.h"
14 #include "RooConstVar.h"
15 #include "RooChebychev.h"
16 #include "RooAddPdf.h"
17 #include "RooSimultaneous.h"
18 #include "RooCategory.h"
19 #include "TCanvas.h"
20 #include "TAxis.h"
21 #include "RooPlot.h"
22 using namespace RooFit;
23 
24 void rf501_simultaneouspdf()
25 {
26  // C r e a t e m o d e l f o r p h y s i c s s a m p l e
27  // -------------------------------------------------------------
28 
29  // Create observables
30  RooRealVar x("x", "x", -8, 8);
31 
32  // Construct signal pdf
33  RooRealVar mean("mean", "mean", 0, -8, 8);
34  RooRealVar sigma("sigma", "sigma", 0.3, 0.1, 10);
35  RooGaussian gx("gx", "gx", x, mean, sigma);
36 
37  // Construct background pdf
38  RooRealVar a0("a0", "a0", -0.1, -1, 1);
39  RooRealVar a1("a1", "a1", 0.004, -1, 1);
40  RooChebychev px("px", "px", x, RooArgSet(a0, a1));
41 
42  // Construct composite pdf
43  RooRealVar f("f", "f", 0.2, 0., 1.);
44  RooAddPdf model("model", "model", RooArgList(gx, px), f);
45 
46  // C r e a t e m o d e l f o r c o n t r o l s a m p l e
47  // --------------------------------------------------------------
48 
49  // Construct signal pdf.
50  // NOTE that sigma is shared with the signal sample model
51  RooRealVar mean_ctl("mean_ctl", "mean_ctl", -3, -8, 8);
52  RooGaussian gx_ctl("gx_ctl", "gx_ctl", x, mean_ctl, sigma);
53 
54  // Construct the background pdf
55  RooRealVar a0_ctl("a0_ctl", "a0_ctl", -0.1, -1, 1);
56  RooRealVar a1_ctl("a1_ctl", "a1_ctl", 0.5, -0.1, 1);
57  RooChebychev px_ctl("px_ctl", "px_ctl", x, RooArgSet(a0_ctl, a1_ctl));
58 
59  // Construct the composite model
60  RooRealVar f_ctl("f_ctl", "f_ctl", 0.5, 0., 1.);
61  RooAddPdf model_ctl("model_ctl", "model_ctl", RooArgList(gx_ctl, px_ctl), f_ctl);
62 
63  // G e n e r a t e e v e n t s f o r b o t h s a m p l e s
64  // ---------------------------------------------------------------
65 
66  // Generate 1000 events in x and y from model
67  RooDataSet *data = model.generate(RooArgSet(x), 100);
68  RooDataSet *data_ctl = model_ctl.generate(RooArgSet(x), 2000);
69 
70  // C r e a t e i n d e x c a t e g o r y a n d j o i n s a m p l e s
71  // ---------------------------------------------------------------------------
72 
73  // Define category to distinguish physics and control samples events
74  RooCategory sample("sample", "sample");
75  sample.defineType("physics");
76  sample.defineType("control");
77 
78  // Construct combined dataset in (x,sample)
79  RooDataSet combData("combData", "combined data", x, Index(sample), Import("physics", *data),
80  Import("control", *data_ctl));
81 
82  // C o n s t r u c t a s i m u l t a n e o u s p d f i n ( x , s a m p l e )
83  // -----------------------------------------------------------------------------------
84 
85  // Construct a simultaneous pdf using category sample as index
86  RooSimultaneous simPdf("simPdf", "simultaneous pdf", sample);
87 
88  // Associate model with the physics state and model_ctl with the control state
89  simPdf.addPdf(model, "physics");
90  simPdf.addPdf(model_ctl, "control");
91 
92  // P e r f o r m a s i m u l t a n e o u s f i t
93  // ---------------------------------------------------
94 
95  // Perform simultaneous fit of model to data and model_ctl to data_ctl
96  simPdf.fitTo(combData);
97 
98  // P l o t m o d e l s l i c e s o n d a t a s l i c e s
99  // ----------------------------------------------------------------
100 
101  // Make a frame for the physics sample
102  RooPlot *frame1 = x.frame(Bins(30), Title("Physics sample"));
103 
104  // Plot all data tagged as physics sample
105  combData.plotOn(frame1, Cut("sample==sample::physics"));
106 
107  // Plot "physics" slice of simultaneous pdf.
108  // NBL You _must_ project the sample index category with data using ProjWData
109  // as a RooSimultaneous makes no prediction on the shape in the index category
110  // and can thus not be integrated
111  simPdf.plotOn(frame1, Slice(sample, "physics"), ProjWData(sample, combData));
112  simPdf.plotOn(frame1, Slice(sample, "physics"), Components("px"), ProjWData(sample, combData), LineStyle(kDashed));
113 
114  // The same plot for the control sample slice
115  RooPlot *frame2 = x.frame(Bins(30), Title("Control sample"));
116  combData.plotOn(frame2, Cut("sample==sample::control"));
117  simPdf.plotOn(frame2, Slice(sample, "control"), ProjWData(sample, combData));
118  simPdf.plotOn(frame2, Slice(sample, "control"), Components("px_ctl"), ProjWData(sample, combData),
119  LineStyle(kDashed));
120 
121  TCanvas *c = new TCanvas("rf501_simultaneouspdf", "rf403_simultaneouspdf", 800, 400);
122  c->Divide(2);
123  c->cd(1);
124  gPad->SetLeftMargin(0.15);
125  frame1->GetYaxis()->SetTitleOffset(1.4);
126  frame1->Draw();
127  c->cd(2);
128  gPad->SetLeftMargin(0.15);
129  frame2->GetYaxis()->SetTitleOffset(1.4);
130  frame2->Draw();
131 }