Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
rf308_normintegration2d.py
Go to the documentation of this file.
1 ## \file
2 ## \ingroup tutorial_roofit
3 ## \notebook
4 ##
5 ## Multidimensional models: normalization and integration of p.d.fs, construction of cumulative distribution functions from p.d.f.s in two dimensions
6 ##
7 ## \macro_code
8 ##
9 ## \date February 2018
10 ## \author Clemens Lange, Wouter Verkerke (C++ version)
11 
12 from __future__ import print_function
13 import ROOT
14 
15 # Set up model
16 # ---------------------
17 
18 # Create observables x,y
19 x = ROOT.RooRealVar("x", "x", -10, 10)
20 y = ROOT.RooRealVar("y", "y", -10, 10)
21 
22 # Create p.d.f. gaussx(x,-2,3), gaussy(y,2,2)
23 gx = ROOT.RooGaussian(
24  "gx", "gx", x, ROOT.RooFit.RooConst(-2), ROOT.RooFit.RooConst(3))
25 gy = ROOT.RooGaussian(
26  "gy", "gy", y, ROOT.RooFit.RooConst(+2), ROOT.RooFit.RooConst(2))
27 
28 # gxy = gx(x)*gy(y)
29 gxy = ROOT.RooProdPdf("gxy", "gxy", ROOT.RooArgList(gx, gy))
30 
31 # Retrieve raw & normalized values of RooFit p.d.f.s
32 # --------------------------------------------------------------------------------------------------
33 
34 # Return 'raw' unnormalized value of gx
35 print("gxy = ", gxy.getVal())
36 
37 # Return value of gxy normalized over x _and_ y in range [-10,10]
38 nset_xy = ROOT.RooArgSet(x, y)
39 print("gx_Norm[x,y] = ", gxy.getVal(nset_xy))
40 
41 # Create object representing integral over gx
42 # which is used to calculate gx_Norm[x,y] == gx / gx_Int[x,y]
43 x_and_y = ROOT.RooArgSet(x, y)
44 igxy = gxy.createIntegral(x_and_y)
45 print("gx_Int[x,y] = ", igxy.getVal())
46 
47 # NB: it is also possible to do the following
48 
49 # Return value of gxy normalized over x in range [-10,10] (i.e. treating y
50 # as parameter)
51 nset_x = ROOT.RooArgSet(x)
52 print("gx_Norm[x] = ", gxy.getVal(nset_x))
53 
54 # Return value of gxy normalized over y in range [-10,10] (i.e. treating x
55 # as parameter)
56 nset_y = ROOT.RooArgSet(y)
57 print("gx_Norm[y] = ", gxy.getVal(nset_y))
58 
59 # Integarte normalizes pdf over subrange
60 # ----------------------------------------------------------------------------
61 
62 # Define a range named "signal" in x from -5,5
63 x.setRange("signal", -5, 5)
64 y.setRange("signal", -3, 3)
65 
66 # Create an integral of gxy_Norm[x,y] over x and y in range "signal"
67 # ROOT.This is the fraction of of p.d.f. gxy_Norm[x,y] which is in the
68 # range named "signal"
69 
70 igxy_sig = gxy.createIntegral(x_and_y, ROOT.RooFit.NormSet(
71  x_and_y), ROOT.RooFit.Range("signal"))
72 print("gx_Int[x,y|signal]_Norm[x,y] = ", igxy_sig.getVal())
73 
74 # Construct cumulative distribution function from pdf
75 # -----------------------------------------------------------------------------------------------------
76 
77 # Create the cumulative distribution function of gx
78 # i.e. calculate Int[-10,x] gx(x') dx'
79 gxy_cdf = gxy.createCdf(ROOT.RooArgSet(x, y))
80 
81 # Plot cdf of gx versus x
82 hh_cdf = gxy_cdf.createHistogram("hh_cdf", x, ROOT.RooFit.Binning(
83  40), ROOT.RooFit.YVar(y, ROOT.RooFit.Binning(40)))
84 hh_cdf.SetLineColor(ROOT.kBlue)
85 
86 c = ROOT.TCanvas("rf308_normintegration2d",
87  "rf308_normintegration2d", 600, 600)
88 ROOT.gPad.SetLeftMargin(0.15)
89 hh_cdf.GetZaxis().SetTitleOffset(1.8)
90 hh_cdf.Draw("surf")
91 
92 c.SaveAs("rf308_normintegration2d.png")