Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
render.c
Go to the documentation of this file.
1 /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include <assert.h>
37 #include <stddef.h>
38 #include "mesh.h"
39 #include "tess.h"
40 #include "render.h"
41 
42 #ifndef TRUE
43 #define TRUE 1
44 #endif
45 #ifndef FALSE
46 #define FALSE 0
47 #endif
48 
49 /* This structure remembers the information we need about a primitive
50  * to be able to render it later, once we have determined which
51  * primitive is able to use the most triangles.
52  */
53 struct FaceCount {
54  long size; /* number of triangles used */
55  GLUhalfEdge *eStart; /* edge where this primitive starts */
56  void (*render)(GLUtesselator *, GLUhalfEdge *, long);
57  /* routine to render this primitive */
58 };
59 
60 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig );
61 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig );
62 
63 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
64 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *eStart, long size );
65 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *eStart,
66  long size );
67 
68 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig );
69 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *head );
70 
71 
72 
73 /************************ Strips and Fans decomposition ******************/
74 
75 /* __gl_renderMesh( tess, mesh ) takes a mesh and breaks it into triangle
76  * fans, strips, and separate triangles. A substantial effort is made
77  * to use as few rendering primitives as possible (ie. to make the fans
78  * and strips as large as possible).
79  *
80  * The rendering output is provided as callbacks (see the api).
81  */
82 void __gl_renderMesh( GLUtesselator *tess, GLUmesh *mesh )
83 {
84  GLUface *f;
85 
86  /* Make a list of separate triangles so we can render them all at once */
87  tess->lonelyTriList = NULL;
88 
89  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
90  f->marked = FALSE;
91  }
92  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
93 
94  /* We examine all faces in an arbitrary order. Whenever we find
95  * an unprocessed face F, we output a group of faces including F
96  * whose size is maximum.
97  */
98  if( f->inside && ! f->marked ) {
99  RenderMaximumFaceGroup( tess, f );
100  assert( f->marked );
101  }
102  }
103  if( tess->lonelyTriList != NULL ) {
104  RenderLonelyTriangles( tess, tess->lonelyTriList );
105  tess->lonelyTriList = NULL;
106  }
107 }
108 
109 
110 static void RenderMaximumFaceGroup( GLUtesselator *tess, GLUface *fOrig )
111 {
112  /* We want to find the largest triangle fan or strip of unmarked faces
113  * which includes the given face fOrig. There are 3 possible fans
114  * passing through fOrig (one centered at each vertex), and 3 possible
115  * strips (one for each CCW permutation of the vertices). Our strategy
116  * is to try all of these, and take the primitive which uses the most
117  * triangles (a greedy approach).
118  */
119  GLUhalfEdge *e = fOrig->anEdge;
120  struct FaceCount max, newFace;
121 
122  max.size = 1;
123  max.eStart = e;
124  max.render = &RenderTriangle;
125 
126  if( ! tess->flagBoundary ) {
127  newFace = MaximumFan( e ); if( newFace.size > max.size ) { max = newFace; }
128  newFace = MaximumFan( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
129  newFace = MaximumFan( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
130 
131  newFace = MaximumStrip( e ); if( newFace.size > max.size ) { max = newFace; }
132  newFace = MaximumStrip( e->Lnext ); if( newFace.size > max.size ) { max = newFace; }
133  newFace = MaximumStrip( e->Lprev ); if( newFace.size > max.size ) { max = newFace; }
134  }
135  (*(max.render))( tess, max.eStart, max.size );
136 }
137 
138 
139 /* Macros which keep track of faces we have marked temporarily, and allow
140  * us to backtrack when necessary. With triangle fans, this is not
141  * really necessary, since the only awkward case is a loop of triangles
142  * around a single origin vertex. However with strips the situation is
143  * more complicated, and we need a general tracking method like the
144  * one here.
145  */
146 #define Marked(f) (! (f)->inside || (f)->marked)
147 
148 #define AddToTrail(f,t) ((f)->trail = (t), (t) = (f), (f)->marked = TRUE)
149 
150 #define FreeTrail(t) do { \
151  while( (t) != NULL ) { \
152  (t)->marked = FALSE; t = (t)->trail; \
153  } \
154  } while(0) /* absorb trailing semicolon */
155 
156 
157 
158 static struct FaceCount MaximumFan( GLUhalfEdge *eOrig )
159 {
160  /* eOrig->Lface is the face we want to render. We want to find the size
161  * of a maximal fan around eOrig->Org. To do this we just walk around
162  * the origin vertex as far as possible in both directions.
163  */
164  struct FaceCount newFace = { 0, NULL, &RenderFan };
165  GLUface *trail = NULL;
166  GLUhalfEdge *e;
167 
168  for( e = eOrig; ! Marked( e->Lface ); e = e->Onext ) {
169  AddToTrail( e->Lface, trail );
170  ++newFace.size;
171  }
172  for( e = eOrig; ! Marked( e->Rface ); e = e->Oprev ) {
173  AddToTrail( e->Rface, trail );
174  ++newFace.size;
175  }
176  newFace.eStart = e;
177  /*LINTED*/
178  FreeTrail( trail );
179  return newFace;
180 }
181 
182 
183 #define IsEven(n) (((n) & 1) == 0)
184 
185 static struct FaceCount MaximumStrip( GLUhalfEdge *eOrig )
186 {
187  /* Here we are looking for a maximal strip that contains the vertices
188  * eOrig->Org, eOrig->Dst, eOrig->Lnext->Dst (in that order or the
189  * reverse, such that all triangles are oriented CCW).
190  *
191  * Again we walk forward and backward as far as possible. However for
192  * strips there is a twist: to get CCW orientations, there must be
193  * an *even* number of triangles in the strip on one side of eOrig.
194  * We walk the strip starting on a side with an even number of triangles;
195  * if both side have an odd number, we are forced to shorten one side.
196  */
197  struct FaceCount newFace = { 0, NULL, &RenderStrip };
198  long headSize = 0, tailSize = 0;
199  GLUface *trail = NULL;
200  GLUhalfEdge *e, *eTail, *eHead;
201 
202  for( e = eOrig; ! Marked( e->Lface ); ++tailSize, e = e->Onext ) {
203  AddToTrail( e->Lface, trail );
204  ++tailSize;
205  e = e->Dprev;
206  if( Marked( e->Lface )) break;
207  AddToTrail( e->Lface, trail );
208  }
209  eTail = e;
210 
211  for( e = eOrig; ! Marked( e->Rface ); ++headSize, e = e->Dnext ) {
212  AddToTrail( e->Rface, trail );
213  ++headSize;
214  e = e->Oprev;
215  if( Marked( e->Rface )) break;
216  AddToTrail( e->Rface, trail );
217  }
218  eHead = e;
219 
220  newFace.size = tailSize + headSize;
221  if( IsEven( tailSize )) {
222  newFace.eStart = eTail->Sym;
223  } else if( IsEven( headSize )) {
224  newFace.eStart = eHead;
225  } else {
226  /* Both sides have odd length, we must shorten one of them. In fact,
227  * we must start from eHead to guarantee inclusion of eOrig->Lface.
228  */
229  --newFace.size;
230  newFace.eStart = eHead->Onext;
231  }
232  /*LINTED*/
233  FreeTrail( trail );
234  return newFace;
235 }
236 
237 
238 static void RenderTriangle( GLUtesselator *tess, GLUhalfEdge *e, long size )
239 {
240  /* Just add the triangle to a triangle list, so we can render all
241  * the separate triangles at once.
242  */
243  (void) size;
244  assert( size == 1 );
245  AddToTrail( e->Lface, tess->lonelyTriList );
246 }
247 
248 
249 static void RenderLonelyTriangles( GLUtesselator *tess, GLUface *f )
250 {
251  /* Now we render all the separate triangles which could not be
252  * grouped into a triangle fan or strip.
253  */
254  GLUhalfEdge *e;
255  int newState;
256  int edgeState = -1; /* force edge state output for first vertex */
257 
258  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLES );
259 
260  for( ; f != NULL; f = f->trail ) {
261  /* Loop once for each edge (there will always be 3 edges) */
262 
263  e = f->anEdge;
264  do {
265  if( tess->flagBoundary ) {
266  /* Set the "edge state" to TRUE just before we output the
267  * first vertex of each edge on the polygon boundary.
268  */
269  newState = ! e->Rface->inside;
270  if( edgeState != newState ) {
271  edgeState = newState;
272  CALL_EDGE_FLAG_OR_EDGE_FLAG_DATA( edgeState );
273  }
274  }
275  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
276 
277  e = e->Lnext;
278  } while( e != f->anEdge );
279  }
280  CALL_END_OR_END_DATA();
281 }
282 
283 
284 static void RenderFan( GLUtesselator *tess, GLUhalfEdge *e, long size )
285 {
286  /* Render as many CCW triangles as possible in a fan starting from
287  * edge "e". The fan *should* contain exactly "size" triangles
288  * (otherwise we've goofed up somewhere).
289  */
290  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_FAN );
291  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
292  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
293 
294  while( ! Marked( e->Lface )) {
295  e->Lface->marked = TRUE;
296  --size;
297  e = e->Onext;
298  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
299  }
300 
301  assert( size == 0 );
302  CALL_END_OR_END_DATA();
303 }
304 
305 
306 static void RenderStrip( GLUtesselator *tess, GLUhalfEdge *e, long size )
307 {
308  /* Render as many CCW triangles as possible in a strip starting from
309  * edge "e". The strip *should* contain exactly "size" triangles
310  * (otherwise we've goofed up somewhere).
311  */
312  CALL_BEGIN_OR_BEGIN_DATA( GL_TRIANGLE_STRIP );
313  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
314  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
315 
316  while( ! Marked( e->Lface )) {
317  e->Lface->marked = TRUE;
318  --size;
319  e = e->Dprev;
320  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
321  if( Marked( e->Lface )) break;
322 
323  e->Lface->marked = TRUE;
324  --size;
325  e = e->Onext;
326  CALL_VERTEX_OR_VERTEX_DATA( e->Dst->data );
327  }
328 
329  assert( size == 0 );
330  CALL_END_OR_END_DATA();
331 }
332 
333 
334 /************************ Boundary contour decomposition ******************/
335 
336 /* __gl_renderBoundary( tess, mesh ) takes a mesh, and outputs one
337  * contour for each face marked "inside". The rendering output is
338  * provided as callbacks (see the api).
339  */
340 void __gl_renderBoundary( GLUtesselator *tess, GLUmesh *mesh )
341 {
342  GLUface *f;
343  GLUhalfEdge *e;
344 
345  for( f = mesh->fHead.next; f != &mesh->fHead; f = f->next ) {
346  if( f->inside ) {
347  CALL_BEGIN_OR_BEGIN_DATA( GL_LINE_LOOP );
348  e = f->anEdge;
349  do {
350  CALL_VERTEX_OR_VERTEX_DATA( e->Org->data );
351  e = e->Lnext;
352  } while( e != f->anEdge );
353  CALL_END_OR_END_DATA();
354  }
355  }
356 }
357 
358 
359 /************************ Quick-and-dirty decomposition ******************/
360 
361 #define SIGN_INCONSISTENT 2
362 
363 static int ComputeNormal( GLUtesselator *tess, GLdouble norm[3], int check )
364 /*
365  * If check==FALSE, we compute the polygon normal and place it in norm[].
366  * If check==TRUE, we check that each triangle in the fan from v0 has a
367  * consistent orientation with respect to norm[]. If triangles are
368  * consistently oriented CCW, return 1; if CW, return -1; if all triangles
369  * are degenerate return 0; otherwise (no consistent orientation) return
370  * SIGN_INCONSISTENT.
371  */
372 {
373  CachedVertex *v0 = tess->cache;
374  CachedVertex *vn = v0 + tess->cacheCount;
375  CachedVertex *vc;
376  GLdouble dot, xc, yc, zc, xp, yp, zp, n[3];
377  int sign = 0;
378 
379  /* Find the polygon normal. It is important to get a reasonable
380  * normal even when the polygon is self-intersecting (eg. a bowtie).
381  * Otherwise, the computed normal could be very tiny, but perpendicular
382  * to the true plane of the polygon due to numerical noise. Then all
383  * the triangles would appear to be degenerate and we would incorrectly
384  * decompose the polygon as a fan (or simply not render it at all).
385  *
386  * We use a sum-of-triangles normal algorithm rather than the more
387  * efficient sum-of-trapezoids method (used in CheckOrientation()
388  * in normal.c). This lets us explicitly reverse the signed area
389  * of some triangles to get a reasonable normal in the self-intersecting
390  * case.
391  */
392  if( ! check ) {
393  norm[0] = norm[1] = norm[2] = 0.0;
394  }
395 
396  vc = v0 + 1;
397  xc = vc->coords[0] - v0->coords[0];
398  yc = vc->coords[1] - v0->coords[1];
399  zc = vc->coords[2] - v0->coords[2];
400  while( ++vc < vn ) {
401  xp = xc; yp = yc; zp = zc;
402  xc = vc->coords[0] - v0->coords[0];
403  yc = vc->coords[1] - v0->coords[1];
404  zc = vc->coords[2] - v0->coords[2];
405 
406  /* Compute (vp - v0) cross (vc - v0) */
407  n[0] = yp*zc - zp*yc;
408  n[1] = zp*xc - xp*zc;
409  n[2] = xp*yc - yp*xc;
410 
411  dot = n[0]*norm[0] + n[1]*norm[1] + n[2]*norm[2];
412  if( ! check ) {
413  /* Reverse the contribution of back-facing triangles to get
414  * a reasonable normal for self-intersecting polygons (see above)
415  */
416  if( dot >= 0 ) {
417  norm[0] += n[0]; norm[1] += n[1]; norm[2] += n[2];
418  } else {
419  norm[0] -= n[0]; norm[1] -= n[1]; norm[2] -= n[2];
420  }
421  } else if( dot != 0 ) {
422  /* Check the new orientation for consistency with previous triangles */
423  if( dot > 0 ) {
424  if( sign < 0 ) return SIGN_INCONSISTENT;
425  sign = 1;
426  } else {
427  if( sign > 0 ) return SIGN_INCONSISTENT;
428  sign = -1;
429  }
430  }
431  }
432  return sign;
433 }
434 
435 /* __gl_renderCache( tess ) takes a single contour and tries to render it
436  * as a triangle fan. This handles convex polygons, as well as some
437  * non-convex polygons if we get lucky.
438  *
439  * Returns TRUE if the polygon was successfully rendered. The rendering
440  * output is provided as callbacks (see the api).
441  */
442 GLboolean __gl_renderCache( GLUtesselator *tess )
443 {
444  CachedVertex *v0 = tess->cache;
445  CachedVertex *vn = v0 + tess->cacheCount;
446  CachedVertex *vc;
447  GLdouble norm[3];
448  int sign;
449 
450  if( tess->cacheCount < 3 ) {
451  /* Degenerate contour -- no output */
452  return TRUE;
453  }
454 
455  norm[0] = tess->normal[0];
456  norm[1] = tess->normal[1];
457  norm[2] = tess->normal[2];
458  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
459  ComputeNormal( tess, norm, FALSE );
460  }
461 
462  sign = ComputeNormal( tess, norm, TRUE );
463  if( sign == SIGN_INCONSISTENT ) {
464  /* Fan triangles did not have a consistent orientation */
465  return FALSE;
466  }
467  if( sign == 0 ) {
468  /* All triangles were degenerate */
469  return TRUE;
470  }
471 
472  /* Make sure we do the right thing for each winding rule */
473  switch( tess->windingRule ) {
474  case GLU_TESS_WINDING_ODD:
475  case GLU_TESS_WINDING_NONZERO:
476  break;
477  case GLU_TESS_WINDING_POSITIVE:
478  if( sign < 0 ) return TRUE;
479  break;
480  case GLU_TESS_WINDING_NEGATIVE:
481  if( sign > 0 ) return TRUE;
482  break;
483  case GLU_TESS_WINDING_ABS_GEQ_TWO:
484  return TRUE;
485  }
486 
487  CALL_BEGIN_OR_BEGIN_DATA( tess->boundaryOnly ? GL_LINE_LOOP
488  : (tess->cacheCount > 3) ? GL_TRIANGLE_FAN
489  : GL_TRIANGLES );
490 
491  CALL_VERTEX_OR_VERTEX_DATA( v0->data );
492  if( sign > 0 ) {
493  for( vc = v0+1; vc < vn; ++vc ) {
494  CALL_VERTEX_OR_VERTEX_DATA( vc->data );
495  }
496  } else {
497  for( vc = vn-1; vc > v0; --vc ) {
498  CALL_VERTEX_OR_VERTEX_DATA( vc->data );
499  }
500  }
501  CALL_END_OR_END_DATA();
502  return TRUE;
503 }