Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
normal.c
Go to the documentation of this file.
1 /*
2  * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3  * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice including the dates of first publication and
13  * either this permission notice or a reference to
14  * http://oss.sgi.com/projects/FreeB/
15  * shall be included in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21  * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22  * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Except as contained in this notice, the name of Silicon Graphics, Inc.
26  * shall not be used in advertising or otherwise to promote the sale, use or
27  * other dealings in this Software without prior written authorization from
28  * Silicon Graphics, Inc.
29  */
30 /*
31 ** Author: Eric Veach, July 1994.
32 **
33 */
34 
35 #include "gluos.h"
36 #include "mesh.h"
37 #include "tess.h"
38 #include "normal.h"
39 #include <math.h>
40 #include <assert.h>
41 
42 #ifndef TRUE
43 #define TRUE 1
44 #endif
45 #ifndef FALSE
46 #define FALSE 0
47 #endif
48 
49 #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
50 
51 #if 0
52 static void Normalize( GLdouble v[3] )
53 {
54  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
55 
56  assert( len > 0 );
57  len = sqrt( len );
58  v[0] /= len;
59  v[1] /= len;
60  v[2] /= len;
61 }
62 #endif
63 
64 #undef ABS
65 #define ABS(x) ((x) < 0 ? -(x) : (x))
66 
67 static int LongAxis( GLdouble v[3] )
68 {
69  int i = 0;
70 
71  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
72  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
73  return i;
74 }
75 
76 static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
77 {
78  GLUvertex *v, *v1, *v2;
79  GLdouble c, tLen2, maxLen2;
80  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
81  GLUvertex *maxVert[3], *minVert[3];
82  GLUvertex *vHead = &tess->mesh->vHead;
83  int i;
84 
85  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
86  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
87 
88  for( v = vHead->next; v != vHead; v = v->next ) {
89  for( i = 0; i < 3; ++i ) {
90  c = v->coords[i];
91  if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
92  if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
93  }
94  }
95 
96  /* Find two vertices separated by at least 1/sqrt(3) of the maximum
97  * distance between any two vertices
98  */
99  i = 0;
100  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
101  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
102  if( minVal[i] >= maxVal[i] ) {
103  /* All vertices are the same -- normal doesn't matter */
104  norm[0] = 0; norm[1] = 0; norm[2] = 1;
105  return;
106  }
107 
108  /* Look for a third vertex which forms the triangle with maximum area
109  * (Length of normal == twice the triangle area)
110  */
111  maxLen2 = 0;
112  v1 = minVert[i];
113  v2 = maxVert[i];
114  d1[0] = v1->coords[0] - v2->coords[0];
115  d1[1] = v1->coords[1] - v2->coords[1];
116  d1[2] = v1->coords[2] - v2->coords[2];
117  for( v = vHead->next; v != vHead; v = v->next ) {
118  d2[0] = v->coords[0] - v2->coords[0];
119  d2[1] = v->coords[1] - v2->coords[1];
120  d2[2] = v->coords[2] - v2->coords[2];
121  tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
122  tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
123  tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
124  tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
125  if( tLen2 > maxLen2 ) {
126  maxLen2 = tLen2;
127  norm[0] = tNorm[0];
128  norm[1] = tNorm[1];
129  norm[2] = tNorm[2];
130  }
131  }
132 
133  if( maxLen2 <= 0 ) {
134  /* All points lie on a single line -- any decent normal will do */
135  norm[0] = norm[1] = norm[2] = 0;
136  norm[LongAxis(d1)] = 1;
137  }
138 }
139 
140 
141 static void CheckOrientation( GLUtesselator *tess )
142 {
143  GLdouble area;
144  GLUface *f, *fHead = &tess->mesh->fHead;
145  GLUvertex *v, *vHead = &tess->mesh->vHead;
146  GLUhalfEdge *e;
147 
148  /* When we compute the normal automatically, we choose the orientation
149  * so that the sum of the signed areas of all contours is non-negative.
150  */
151  area = 0;
152  for( f = fHead->next; f != fHead; f = f->next ) {
153  e = f->anEdge;
154  if( e->winding <= 0 ) continue;
155  do {
156  area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
157  e = e->Lnext;
158  } while( e != f->anEdge );
159  }
160  if( area < 0 ) {
161  /* Reverse the orientation by flipping all the t-coordinates */
162  for( v = vHead->next; v != vHead; v = v->next ) {
163  v->t = - v->t;
164  }
165  tess->tUnit[0] = - tess->tUnit[0];
166  tess->tUnit[1] = - tess->tUnit[1];
167  tess->tUnit[2] = - tess->tUnit[2];
168  }
169 }
170 
171 #ifdef FOR_TRITE_TEST_PROGRAM
172 #include <stdlib.h>
173 extern int RandomSweep;
174 #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
175 #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
176 #else
177 #if defined(SLANTED_SWEEP)
178 /* The "feature merging" is not intended to be complete. There are
179  * special cases where edges are nearly parallel to the sweep line
180  * which are not implemented. The algorithm should still behave
181  * robustly (ie. produce a reasonable tesselation) in the presence
182  * of such edges, however it may miss features which could have been
183  * merged. We could minimize this effect by choosing the sweep line
184  * direction to be something unusual (ie. not parallel to one of the
185  * coordinate axes).
186  */
187 #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
188 #define S_UNIT_Y 0.86052074622010633
189 #else
190 #define S_UNIT_X 1.0
191 #define S_UNIT_Y 0.0
192 #endif
193 #endif
194 
195 /* Determine the polygon normal and project vertices onto the plane
196  * of the polygon.
197  */
198 void __gl_projectPolygon( GLUtesselator *tess )
199 {
200  GLUvertex *v, *vHead = &tess->mesh->vHead;
201  GLdouble norm[3];
202  GLdouble *sUnit, *tUnit;
203  int i, computedNormal = FALSE;
204 
205  norm[0] = tess->normal[0];
206  norm[1] = tess->normal[1];
207  norm[2] = tess->normal[2];
208  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
209  ComputeNormal( tess, norm );
210  computedNormal = TRUE;
211  }
212  sUnit = tess->sUnit;
213  tUnit = tess->tUnit;
214  i = LongAxis( norm );
215 
216 #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
217  /* Choose the initial sUnit vector to be approximately perpendicular
218  * to the normal.
219  */
220  Normalize( norm );
221 
222  sUnit[i] = 0;
223  sUnit[(i+1)%3] = S_UNIT_X;
224  sUnit[(i+2)%3] = S_UNIT_Y;
225 
226  /* Now make it exactly perpendicular */
227  w = Dot( sUnit, norm );
228  sUnit[0] -= w * norm[0];
229  sUnit[1] -= w * norm[1];
230  sUnit[2] -= w * norm[2];
231  Normalize( sUnit );
232 
233  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
234  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
235  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
236  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
237  Normalize( tUnit );
238 #else
239  /* Project perpendicular to a coordinate axis -- better numerically */
240  sUnit[i] = 0;
241  sUnit[(i+1)%3] = S_UNIT_X;
242  sUnit[(i+2)%3] = S_UNIT_Y;
243 
244  tUnit[i] = 0;
245  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
246  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
247 #endif
248 
249  /* Project the vertices onto the sweep plane */
250  for( v = vHead->next; v != vHead; v = v->next ) {
251  v->s = Dot( v->coords, sUnit );
252  v->t = Dot( v->coords, tUnit );
253  }
254  if( computedNormal ) {
255  CheckOrientation( tess );
256  }
257 }