Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
likelihoodrefs.cxx
Go to the documentation of this file.
1 #include "TMVA/likelihoodrefs.h"
2 #include <vector>
3 #include <string>
4 
5 
6 
7 // this macro plots the reference distribuions for the Likelihood
8 // methods for the various input variables used in TMVA (e.g. running
9 // TMVAnalysis.C). Signal and Background are plotted separately
10 
11 // input: - Input file (result from TMVA),
12 // - use of TMVA plotting TStyle
13 
14 
15 void TMVA::likelihoodrefs(TString dataset, TDirectory *lhdir ) {
16  Bool_t newCanvas = kTRUE;
17 
18  const UInt_t maxCanvas = 200;
19  TCanvas** c = new TCanvas*[maxCanvas];
20  Int_t width = 670;
21  Int_t height = 380;
22 
23  // avoid duplicated printing
24  std::vector<std::string> hasBeenUsed;
25  const TString titName = lhdir->GetName();
26  UInt_t ic = -1;
27 
28  TIter next(lhdir->GetListOfKeys());
29  TKey *key;
30  while ((key = TMVAGlob::NextKey(next,"TH1"))) { // loop over all TH1
31  TH1 *h = (TH1*)key->ReadObj();
32  TH1F *b( 0 );
33  TString hname( h->GetName() );
34 
35  // avoid duplicated plotting
36  Bool_t found = kFALSE;
37  for (UInt_t j = 0; j < hasBeenUsed.size(); j++) {
38  if (hasBeenUsed[j] == hname.Data()) found = kTRUE;
39  }
40  if (!found) {
41 
42  // draw original plots
43  if (hname.EndsWith("_sig_nice")) {
44 
45  if (newCanvas) {
46  char cn[20];
47  sprintf( cn, "cv%d_%s", ic+1, titName.Data() );
48  ++ic;
49  TString n = hname;
50  c[ic] = new TCanvas( cn, Form( "%s reference for variable: %s",
51  titName.Data(),(n.ReplaceAll("_sig","")).Data() ),
52  ic*50+50, ic*20, width, height );
53  c[ic]->Divide(2,1);
54  newCanvas = kFALSE;
55  }
56 
57  // signal
58  Int_t color = 4;
59  TPad * cPad = (TPad*)c[ic]->cd(1);
60  TString plotname = hname;
61 
62  h->SetMaximum(h->GetMaximum()*1.3);
63  h->SetMinimum( 0 );
64  h->SetMarkerColor(color);
65  h->SetMarkerSize( 0.7 );
66  h->SetMarkerStyle( 24 );
67  h->SetLineWidth(1);
68  h->SetLineColor(color);
69  color++;
70  h->Draw("e1");
71  Double_t hSscale = 1.0/(h->GetSumOfWeights()*h->GetBinWidth(1));
72 
73  TLegend *legS= new TLegend( cPad->GetLeftMargin(),
74  1-cPad->GetTopMargin()-.14,
75  cPad->GetLeftMargin()+.77,
76  1-cPad->GetTopMargin() );
77  legS->SetBorderSize(1);
78  legS->AddEntry(h,"Input data (signal)","p");
79 
80  // background
81  TString bname( hname );
82  b = (TH1F*)lhdir->Get( bname.ReplaceAll("_sig","_bgd") );
83  cPad = (TPad*)c[ic]->cd(2);
84  color = 2;
85  b->SetMaximum(b->GetMaximum()*1.3);
86  b->SetMinimum( 0 );
87  b->SetLineWidth(1);
88  b->SetLineColor(color);
89  b->SetMarkerColor(color);
90  b->SetMarkerSize( 0.7 );
91  b->SetMarkerStyle( 24 );
92  b->Draw("e1");
93  Double_t hBscale = 1.0/(b->GetSumOfWeights()*b->GetBinWidth(1));
94  TLegend *legB= new TLegend( cPad->GetLeftMargin(),
95  1-cPad->GetTopMargin()-.14,
96  cPad->GetLeftMargin()+.77,
97  1-cPad->GetTopMargin() );
98  legB->SetBorderSize(1);
99  legB->AddEntry(b,"Input data (backgr.)","p");
100 
101  // register
102  hasBeenUsed.push_back( bname.Data() );
103 
104  // the PDFs --------------
105 
106  // check for splines
107  h = 0;
108  b = 0;
109  TString pname = hname; pname.ReplaceAll("_nice","");
110  for (int i=0; i<= 5; i++) {
111  TString hspline = pname + Form( "_smoothed_hist_from_spline%i", i );
112  h = (TH1F*)lhdir->Get( hspline );
113  if (h) {
114  b = (TH1F*)lhdir->Get( hspline.ReplaceAll("_sig","_bgd") );
115  break;
116  }
117  }
118 
119  // check for KDE
120  if (h == 0 && b == 0) {
121  TString hspline = pname +"_smoothed_hist_from_KDE";
122  h = (TH1F*)lhdir->Get( hspline );
123  if (h) {
124  b = (TH1F*)lhdir->Get( hspline.ReplaceAll("_sig","_bgd") );
125  }
126  }
127 
128  // found something ?
129  if (h == 0 || b == 0) {
130  cout << "--- likelihoodrefs.C: did not find spline for histogram: " << pname.Data() << endl;
131  }
132  else {
133 
134  Double_t pSscale = 1.0/(h->GetSumOfWeights()*h->GetBinWidth(1));
135  h->Scale( pSscale/hSscale );
136  color = 4;
137  c[ic]->cd(1);
138  h->SetLineWidth(2);
139  h->SetLineColor(color);
140  legS->AddEntry(h,"Estimated PDF (norm. signal)","l");
141  h->Draw("histsame");
142  legS->Draw();
143 
144  Double_t pBscale = 1.0/(b->GetSumOfWeights()*b->GetBinWidth(1));
145  b->Scale( pBscale/hBscale );
146  color = 2;
147  c[ic]->cd(2);
148  b->SetLineColor(color);
149  b->SetLineWidth(2);
150  legB->AddEntry(b,"Estimated PDF (norm. backgr.)","l");
151  b->Draw("histsame");
152 
153  // draw the legends
154  legB->Draw();
155 
156  hasBeenUsed.push_back( pname.Data() );
157  }
158  c[ic]->Update();
159 
160  // write to file
161  TString fname = Form( "%s/plots/%s_refs_c%i",dataset.Data(), titName.Data(), ic+1 );
162  TMVAGlob::imgconv( c[ic], fname );
163  //c[ic]->Update();
164 
165  newCanvas = kTRUE;
166  hasBeenUsed.push_back( hname.Data() );
167  }
168  }
169  }
170 }
171 
172 void TMVA::likelihoodrefs(TString dataset, TString fin , Bool_t useTMVAStyle )
173 {
174  // set style and remove existing canvas'
175  TMVAGlob::Initialize( useTMVAStyle );
176 
177  // checks if file with name "fin" is already open, and if not opens one
178  TFile *file=TMVAGlob::OpenFile( fin );
179 
180  // get all titles of the method likelihood
181  TList titles;
182  TString metlike="Method_Likelihood";
183  UInt_t ninst = TMVAGlob::GetListOfTitles(metlike,titles,file->GetDirectory(dataset.Data()));
184  if (ninst==0) {
185  cout << "Could not locate directory 'Method_Likelihood' in file " << fin << endl;
186  return;
187  }
188  // loop over all titles
189  TIter keyIter(&titles);
190  TDirectory *lhdir;
191  TKey *key;
192  while ((key = TMVAGlob::NextKey(keyIter,"TDirectory"))) {
193  lhdir = (TDirectory *)key->ReadObj();
194  likelihoodrefs(dataset, lhdir );
195  }
196 }
197