Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
df001_introduction.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_dataframe
3 /// \notebook -nodraw
4 /// This tutorial illustrates the basic features of the RDataFrame class,
5 /// a utility which allows to interact with data stored in TTrees following
6 /// a functional-chain like approach.
7 ///
8 /// \macro_code
9 /// \macro_output
10 ///
11 /// \date December 2016
12 /// \author Enrico Guiraud
13 
14 // ## Preparation
15 
16 // A simple helper function to fill a test tree: this makes the example
17 // stand-alone.
18 void fill_tree(const char *treeName, const char *fileName)
19 {
20  ROOT::RDataFrame d(10);
21  int i(0);
22  d.Define("b1", [&i]() { return (double)i; })
23  .Define("b2",
24  [&i]() {
25  auto j = i * i;
26  ++i;
27  return j;
28  })
29  .Snapshot(treeName, fileName);
30 }
31 
32 int df001_introduction()
33 {
34 
35  // We prepare an input tree to run on
36  auto fileName = "df001_introduction.root";
37  auto treeName = "myTree";
38  fill_tree(treeName, fileName);
39 
40  // We read the tree from the file and create a RDataFrame, a class that
41  // allows us to interact with the data contained in the tree.
42  // We select a default column, a *branch* to adopt ROOT jargon, which will
43  // be looked at if none is specified by the user when dealing with filters
44  // and actions.
45  ROOT::RDataFrame d(treeName, fileName, {"b1"});
46 
47  // ## Operations on the dataframe
48  // We now review some *actions* which can be performed on the data frame.
49  // All actions but ForEach return a TActionResultPtr<T>. The series of
50  // operations on the data frame is not executed until one of those pointers
51  // is accessed. If the Foreach action is invoked, the execution is immediate.
52  // But first of all, let us we define now our cut-flow with two lambda
53  // functions. We can use free functions too.
54  auto cutb1 = [](double b1) { return b1 < 5.; };
55  auto cutb1b2 = [](int b2, double b1) { return b2 % 2 && b1 < 4.; };
56 
57  // ### `Count` action
58  // The `Count` allows to retrieve the number of the entries that passed the
59  // filters. Here we show how the automatic selection of the column kicks
60  // in in case the user specifies none.
61  auto entries1 = d.Filter(cutb1) // <- no column name specified here!
62  .Filter(cutb1b2, {"b2", "b1"})
63  .Count();
64 
65  std::cout << *entries1 << " entries passed all filters" << std::endl;
66 
67  // Filters can be expressed as strings. The content must be C++ code. The
68  // name of the variables must be the name of the branches. The code is
69  // just in time compiled.
70  auto entries2 = d.Filter("b1 < 5.").Count();
71  std::cout << *entries2 << " entries passed the string filter" << std::endl;
72 
73  // ### `Min`, `Max` and `Mean` actions
74  // These actions allow to retrieve statistical information about the entries
75  // passing the cuts, if any.
76  auto b1b2_cut = d.Filter(cutb1b2, {"b2", "b1"});
77  auto minVal = b1b2_cut.Min();
78  auto maxVal = b1b2_cut.Max();
79  auto meanVal = b1b2_cut.Mean();
80  auto nonDefmeanVal = b1b2_cut.Mean("b2"); // <- Column is not the default
81  std::cout << "The mean is always included between the min and the max: " << *minVal << " <= " << *meanVal
82  << " <= " << *maxVal << std::endl;
83 
84  // ### `Take` action
85  // The `Take` action allows to retrieve all values of the variable stored in a
86  // particular column that passed filters we specified. The values are stored
87  // in a list by default, but other collections can be chosen.
88  auto b1_cut = d.Filter(cutb1);
89  auto b1Vec = b1_cut.Take<double>();
90  auto b1List = b1_cut.Take<double, std::list<double>>();
91 
92  std::cout << "Selected b1 entries" << std::endl;
93  for (auto b1_entry : *b1List)
94  std::cout << b1_entry << " ";
95  std::cout << std::endl;
96  auto b1VecCl = ROOT::GetClass(b1Vec.GetPtr());
97  std::cout << "The type of b1Vec is " << b1VecCl->GetName() << std::endl;
98 
99  // ### `Histo1D` action
100  // The `Histo1D` action allows to fill an histogram. It returns a TH1D filled
101  // with values of the column that passed the filters. For the most common
102  // types, the type of the values stored in the column is automatically
103  // guessed.
104  auto hist = d.Filter(cutb1).Histo1D();
105  std::cout << "Filled h " << hist->GetEntries() << " times, mean: " << hist->GetMean() << std::endl;
106 
107  // ### `Foreach` action
108  // The most generic action of all: an operation is applied to all entries.
109  // In this case we fill a histogram. In some sense this is a violation of a
110  // purely functional paradigm - C++ allows to do that.
111  TH1F h("h", "h", 12, -1, 11);
112  d.Filter([](int b2) { return b2 % 2 == 0; }, {"b2"}).Foreach([&h](double b1) { h.Fill(b1); });
113 
114  std::cout << "Filled h with " << h.GetEntries() << " entries" << std::endl;
115 
116  // ## Express your chain of operations with clarity!
117  // We are discussing an example here but it is not hard to imagine much more
118  // complex pipelines of actions acting on data. Those might require code
119  // which is well organised, for example allowing to conditionally add filters
120  // or again to clearly separate filters and actions without the need of
121  // writing the entire pipeline on one line. This can be easily achieved.
122  // We'll show this re-working the `Count` example:
123  auto cutb1_result = d.Filter(cutb1);
124  auto cutb1b2_result = d.Filter(cutb1b2, {"b2", "b1"});
125  auto cutb1_cutb1b2_result = cutb1_result.Filter(cutb1b2, {"b2", "b1"});
126  // Now we want to count:
127  auto evts_cutb1_result = cutb1_result.Count();
128  auto evts_cutb1b2_result = cutb1b2_result.Count();
129  auto evts_cutb1_cutb1b2_result = cutb1_cutb1b2_result.Count();
130 
131  std::cout << "Events passing cutb1: " << *evts_cutb1_result << std::endl
132  << "Events passing cutb1b2: " << *evts_cutb1b2_result << std::endl
133  << "Events passing both: " << *evts_cutb1_cutb1b2_result << std::endl;
134 
135  // ## Calculating quantities starting from existing columns
136  // Often, operations need to be carried out on quantities calculated starting
137  // from the ones present in the columns. We'll create in this example a third
138  // column the values of which are the sum of the *b1* and *b2* ones, entry by
139  // entry. The way in which the new quantity is defined is via a runable.
140  // It is important to note two aspects at this point:
141  // - The value is created on the fly only if the entry passed the existing
142  // filters.
143  // - The newly created column behaves as the one present on the file on disk.
144  // - The operation creates a new value, without modifying anything. De facto,
145  // this is like having a general container at disposal able to accommodate
146  // any value of any type.
147  // Let's dive in an example:
148  auto entries_sum = d.Define("sum", [](double b1, int b2) { return b2 + b1; }, {"b1", "b2"})
149  .Filter([](double sum) { return sum > 4.2; }, {"sum"})
150  .Count();
151  std::cout << *entries_sum << std::endl;
152 
153  // Additional columns can be expressed as strings. The content must be C++
154  // code. The name of the variables must be the name of the branches. The code
155  // is just in time compiled.
156  auto entries_sum2 = d.Define("sum2", "b1 + b2").Filter("sum2 > 4.2").Count();
157  std::cout << *entries_sum2 << std::endl;
158 
159  // It is possible at any moment to read the entry number and the processing
160  // slot number. The latter may change when implicit multithreading is active.
161  // The special columns which provide the entry number and the slot index are
162  // called "tdfentry_" and "tdfslot_" respectively. Their types are an unsigned
163  // 64 bit integer and an unsigned integer.
164  auto printEntrySlot = [](ULong64_t iEntry, unsigned int slot) {
165  std::cout << "Entry: " << iEntry << " Slot: " << slot << std::endl;
166  };
167  d.Foreach(printEntrySlot, {"tdfentry_", "tdfslot_"});
168 
169  return 0;
170 }