Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
correlationscatters.cxx
Go to the documentation of this file.
2 #include "TMVA/Config.h"
3 
4 
5 
6 // this macro plots the correlations (as scatter plots) of
7 // the various input variable combinations used in TMVA (e.g. running
8 // TMVAnalysis.C). Signal and Background are plotted separately
9 
10 // input: - Input file (result from TMVA),
11 // - normal/decorrelated/PCA
12 // - use of TMVA plotting TStyle
13 void TMVA::correlationscatters(TString dataset, TString fin , TString var,
14  TString dirName_, TString /*title */ ,
15  Bool_t isRegression ,
16  Bool_t useTMVAStyle )
17 {
18  // set style and remove existing canvas'
19  TMVAGlob::Initialize( useTMVAStyle );
20 
21  TString extension = dirName_;
22  extension.ReplaceAll( "InputVariables", "" );
23  extension.ReplaceAll( " ", "" );
24  if (extension == "") extension = "_Id"; // use 'Id' for 'idendtity transform'
25 
26  var.ReplaceAll( extension, "" );
27  cout << "Called macro \"correlationscatters\" for variable: \"" << var
28  << "\", transformation type \"" << dirName_
29  << "\" (extension: \"" << extension << "\")" << endl;
30 
31  // checks if file with name "fin" is already open, and if not opens one
32  TFile* file = TMVAGlob::OpenFile( fin );
33 
34  TString dirName = dirName_ + "/CorrelationPlots";
35 
36  // find out number of input variables
37  TDirectory* vardir = (TDirectory*)file->GetDirectory(dataset.Data())->Get("InputVariables_Id");
38  if (!vardir) {
39  cout << "ERROR: no such directory: \"InputVariables\"" << endl;
40  return;
41  }
42  Int_t noVars = TMVAGlob::GetNumberOfInputVariables( vardir ); // subtraction of target(s) no longer necessary
43 
44  TDirectory* dir = (TDirectory*)file->GetDirectory(dataset.Data())->Get( dirName );
45  if (dir==0) {
46  cout << "No information about " << extension << " available in " << fin << endl;
47  return;
48  }
49  dir->cd();
50 
51  TListIter keyIt(dir->GetListOfKeys());
52  Int_t noPlots = noVars - 1;
53 
54  cout << "noPlots: " << noPlots << " --> noVars: " << noVars << endl;
55  if (noVars != Int_t(noVars)) {
56  cout << "*** Warning: problem in inferred number of variables ... not an integer *** " << endl;
57  }
58 
59  // define Canvas layout here!
60  // default setting
61  Int_t xPad; // no of plots in x
62  Int_t yPad; // no of plots in y
63  Int_t width; // size of canvas
64  Int_t height;
65  switch (noPlots) {
66  case 1:
67  xPad = 1; yPad = 1; width = 400; height = width; break;
68  case 2:
69  xPad = 2; yPad = 1; width = 700; height = 0.55*width; break;
70  case 3:
71  xPad = 3; yPad = 1; width = 800; height = 0.4*width; break;
72  case 4:
73  xPad = 2; yPad = 2; width = 600; height = width; break;
74  default:
75  xPad = 3; yPad = 2; width = 800; height = 0.55*width; break;
76  }
77  Int_t noPadPerCanv = xPad * yPad ;
78 
79  // counter variables
80  Int_t countCanvas = 0;
81 
82  // loop over all objects in "input_variables" directory
83  TString thename[2] = { "_Signal", "_Background" };
84  if (isRegression) thename[0] = "_Regression";
85  for (UInt_t itype = 0; itype < 2; itype++) {
86 
87  TIter next(gDirectory->GetListOfKeys());
88  TKey * key = 0;
89  TCanvas* canv = 0;
90 
91  Int_t countPad = 0;
92 
93  while ( (key = (TKey*)next()) ) {
94 
95  if (key->GetCycle() != 1) continue;
96 
97  // make sure, that we only look at histograms
98  TClass *cl = gROOT->GetClass(key->GetClassName());
99  if (!cl->InheritsFrom("TH1")) continue;
100  TH1 *scat = (TH1*)key->ReadObj();
101  TString hname = scat->GetName();
102 
103  // check for all signal histograms
104  if (! (hname.EndsWith( thename[itype] + extension ) &&
105  hname.Contains( TString("_") + var + "_" ) && hname.BeginsWith("scat_")) ) {
106  scat->Delete();
107  continue;
108  }
109 
110  // found a new signal plot
111 
112  // create new canvas
113  if (countPad%noPadPerCanv==0) {
114  ++countCanvas;
115  TString ext = extension; ext.Remove( 0, 1 );
116  canv = new TCanvas( Form("canvas%d", countCanvas),
117  Form("Correlation profiles for '%s'-transformed %s variables",
118  ext.Data(), (isRegression ? "" : (itype==0) ? "signal" : "background")),
119  countCanvas*50+200, countCanvas*20, width, height );
120  canv->Divide(xPad,yPad);
121  }
122 
123  if (!canv) continue;
124 
125  canv->cd(countPad++%noPadPerCanv+1);
126 
127  // find the corredponding backgrouns histo
128  TString bgname = hname;
129  bgname.ReplaceAll("scat_","prof_");
130  TH1 *prof = (TH1*)gDirectory->Get(bgname);
131  if (prof == NULL) {
132  cout << "ERROR!!! couldn't find background histo for" << hname << endl;
133  //exit(1);
134  return;
135  }
136  // this is set but not stored during plot creation in MVA_Factory
137  TMVAGlob::SetSignalAndBackgroundStyle( scat, prof );
138 
139  // chop off "signal"
140  TMVAGlob::SetFrameStyle( scat, 1.2 );
141 
142  // normalise both signal and background
143  scat->Scale( 1.0/scat->GetSumOfWeights() );
144 
145  // finally plot and overlay
146  scat->SetMarkerColor( 4);
147  scat->Draw("col");
148  prof->SetMarkerColor( gConfig().fVariablePlotting.fUsePaperStyle ? 1 : 2 );
149  prof->SetMarkerSize( 0.2 );
150  prof->SetLineColor( gConfig().fVariablePlotting.fUsePaperStyle ? 1 : 2 );
151  prof->SetLineWidth( gConfig().fVariablePlotting.fUsePaperStyle ? 2 : 1 );
152  prof->SetFillStyle( 3002 );
153  prof->SetFillColor( 46 );
154  prof->Draw("samee1");
155  // redraw axes
156  scat->Draw("sameaxis");
157 
158  // save canvas to file
159  if (countPad%noPadPerCanv==0) {
160  canv->Update();
161 
162  TString fname = Form( "%s/plots/correlationscatter_%s_%s_c%i",dataset.Data(),var.Data(), extension.Data(), countCanvas );
163  TMVAGlob::plot_logo();
164  TMVAGlob::imgconv( canv, fname );
165  }
166  }
167  if (countPad%noPadPerCanv!=0) {
168  canv->Update();
169 
170  TString fname = Form( "%s/plots/correlationscatter_%s_%s_c%i",dataset.Data(),var.Data(), extension.Data(), countCanvas );
171  TMVAGlob::plot_logo();
172  TMVAGlob::imgconv( canv, fname );
173  }
174  }
175 }