Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
candleplotwhiskers.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_hist
3 /// \notebook
4 /// Example of candle plot showing the whiskers definition.
5 ///
6 /// \macro_image
7 /// \macro_output
8 /// \macro_code
9 ///
10 /// \author Georg Troska
11 
12 void candleplotwhiskers() {
13  auto c1 = new TCanvas("c1","Candle Presets",700,800);
14  c1->Divide(1,2);
15 
16  auto rng = new TRandom();
17  auto h1 = new TH2I("h1","Gaus",100,-5,5,1,0,1);
18  auto h2 = new TH1I("h2","Gaus",100,-5,5);
19 
20  h1->GetXaxis()->SetTitle("Standard deviation #sigma");
21  h2->GetXaxis()->SetTitle("Standard deviation #sigma");
22  h2->GetYaxis()->SetTitle("dN/d#sigma");
23 
24  float myRand;
25  for (int i = 0; i < 100000; i++) {
26  myRand = rng->Gaus(0,1);
27  h1->Fill(myRand,0);
28  h2->Fill(myRand);
29  }
30 
31  Double_t *q = new Double_t[3];
32  Double_t *p = new Double_t[3];
33  q[0] = 0.; q[1] = 0.; q[2] = 0.;
34  p[0] = 0.25; p[1] = 0.5; p[2] = 0.75;
35 
36  h2->GetQuantiles(3,q,p);
37  cout << "Q1 (-25%): " << q[0] << " Median: " << q[1] << " Q3 (+25%): " << q[2] << endl;
38  double iqr = q[2]-q[0];
39  auto mygaus_1_middle = new TF1("mygaus_1_middle","gaus",q[0],q[2]);
40  auto mygaus_1_left = new TF1("mygaus_1_left","gaus",q[0]-1.5*iqr,q[0]);
41  mygaus_1_left->SetLineColor(kGreen);
42  auto mygaus_1_right = new TF1("mygaus_1_right","gaus",q[2],q[2]+1.5*iqr);
43  mygaus_1_right->SetLineColor(kGreen);
44  c1->cd(1);
45  h1->SetLineWidth(3);
46  h1->SetFillStyle(0);
47  h1->Draw("candley2 scat");
48 
49  c1->cd(2);
50  h2->Draw("");
51  h2->Fit("mygaus_1_left","R");
52  mygaus_1_left->Draw("same");
53  auto l3 = new TLine(q[0]-1.5*iqr,0,q[0]-1.5*iqr,mygaus_1_left->Eval(q[0]-1.5*iqr));
54  l3->SetLineColor(kGreen); l3->SetLineWidth(2); l3->Draw("");
55  auto l1 = new TLine(q[0] ,0,q[0] ,mygaus_1_left->Eval(q[0]));
56  l1->SetLineWidth(2); l1->SetLineColor(kGreen); l1->Draw("");
57 
58  h2->Fit("mygaus_1_right","R","");
59  mygaus_1_right->Draw("same");
60  auto l4 = new TLine(q[2]+1.5*iqr,0,q[2]+1.5*iqr,mygaus_1_left->Eval(q[2]+1.5*iqr));
61  l4->SetLineColor(kGreen); l4->SetLineWidth(2); l4->Draw("");
62  auto l5 = new TLine(q[2] ,0,q[2] ,mygaus_1_right->Eval(q[2]));
63  l5->SetLineWidth(2); l5->SetLineColor(kGreen); l5->Draw("");
64 
65  h2->Fit("mygaus_1_middle","R");
66  mygaus_1_middle->Draw("same");
67 
68  //In principal one could calculate these values by h2->Integral() as well
69  auto t = new TText(); t->SetTextFont(42);
70  t->DrawText(0,mygaus_1_middle->Eval(0)/2,"50%");
71  t->DrawText(-1.5,mygaus_1_middle->Eval(-1.5)/2,"24.65%");
72  t->DrawText(+1,mygaus_1_middle->Eval(+1.5)/2,"24.65%");
73  t->DrawText(q[0]-1.5*iqr,1000,Form("%.3f",q[0]-1.5*iqr))->SetTextAngle(90);
74  t->DrawText(q[2]+1.5*iqr,1000,Form("%.3f",q[2]+1.5*iqr))->SetTextAngle(90);
75  t->DrawText(q[0],1000,Form("%.3f",q[0]))->SetTextAngle(90);
76  t->DrawText(q[2],1000,Form("%.3f",q[2]))->SetTextAngle(90);
77 }