62 int TMVAClassification( TString myMethodList =
"" )
74 TMVA::Tools::Instance();
77 std::map<std::string,int> Use;
87 Use[
"Likelihood"] = 1;
88 Use[
"LikelihoodD"] = 0;
89 Use[
"LikelihoodPCA"] = 1;
90 Use[
"LikelihoodKDE"] = 0;
91 Use[
"LikelihoodMIX"] = 0;
98 Use[
"PDEFoamBoost"] = 0;
105 Use[
"BoostedFisher"] = 0;
122 #ifdef R__HAS_TMVAGPU
128 #ifdef R__HAS_TMVACPU
148 std::cout << std::endl;
149 std::cout <<
"==> Start TMVAClassification" << std::endl;
152 if (myMethodList !=
"") {
153 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) it->second = 0;
155 std::vector<TString> mlist = TMVA::gTools().SplitString( myMethodList,
',' );
156 for (UInt_t i=0; i<mlist.size(); i++) {
157 std::string regMethod(mlist[i]);
159 if (Use.find(regMethod) == Use.end()) {
160 std::cout <<
"Method \"" << regMethod <<
"\" not known in TMVA under this name. Choose among the following:" << std::endl;
161 for (std::map<std::string,int>::iterator it = Use.begin(); it != Use.end(); it++) std::cout << it->first <<
" ";
162 std::cout << std::endl;
176 TString fname =
"./tmva_class_example.root";
177 if (!gSystem->AccessPathName( fname )) {
178 input = TFile::Open( fname );
181 TFile::SetCacheFileDir(
".");
182 input = TFile::Open(
"http://root.cern.ch/files/tmva_class_example.root",
"CACHEREAD");
185 std::cout <<
"ERROR: could not open data file" << std::endl;
188 std::cout <<
"--- TMVAClassification : Using input file: " << input->GetName() << std::endl;
192 TTree *signalTree = (TTree*)input->Get(
"TreeS");
193 TTree *background = (TTree*)input->Get(
"TreeB");
196 TString outfileName(
"TMVA.root" );
197 TFile* outputFile = TFile::Open( outfileName,
"RECREATE" );
209 TMVA::Factory *factory =
new TMVA::Factory(
"TMVAClassification", outputFile,
210 "!V:!Silent:Color:DrawProgressBar:Transformations=I;D;P;G,D:AnalysisType=Classification" );
212 TMVA::DataLoader *dataloader=
new TMVA::DataLoader(
"dataset");
222 dataloader->AddVariable(
"myvar1 := var1+var2",
'F' );
223 dataloader->AddVariable(
"myvar2 := var1-var2",
"Expression 2",
"",
'F' );
224 dataloader->AddVariable(
"var3",
"Variable 3",
"units",
'F' );
225 dataloader->AddVariable(
"var4",
"Variable 4",
"units",
'F' );
231 dataloader->AddSpectator(
"spec1 := var1*2",
"Spectator 1",
"units",
'F' );
232 dataloader->AddSpectator(
"spec2 := var1*3",
"Spectator 2",
"units",
'F' );
236 Double_t signalWeight = 1.0;
237 Double_t backgroundWeight = 1.0;
240 dataloader->AddSignalTree ( signalTree, signalWeight );
241 dataloader->AddBackgroundTree( background, backgroundWeight );
286 dataloader->SetBackgroundWeightExpression(
"weight" );
303 dataloader->PrepareTrainingAndTestTree( mycuts, mycutb,
304 "nTrain_Signal=1000:nTrain_Background=1000:SplitMode=Random:NormMode=NumEvents:!V" );
315 factory->BookMethod( dataloader, TMVA::Types::kCuts,
"Cuts",
316 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart" );
319 factory->BookMethod( dataloader, TMVA::Types::kCuts,
"CutsD",
320 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=Decorrelate" );
323 factory->BookMethod( dataloader, TMVA::Types::kCuts,
"CutsPCA",
324 "!H:!V:FitMethod=MC:EffSel:SampleSize=200000:VarProp=FSmart:VarTransform=PCA" );
327 factory->BookMethod( dataloader, TMVA::Types::kCuts,
"CutsGA",
328 "H:!V:FitMethod=GA:CutRangeMin[0]=-10:CutRangeMax[0]=10:VarProp[1]=FMax:EffSel:Steps=30:Cycles=3:PopSize=400:SC_steps=10:SC_rate=5:SC_factor=0.95" );
331 factory->BookMethod( dataloader, TMVA::Types::kCuts,
"CutsSA",
332 "!H:!V:FitMethod=SA:EffSel:MaxCalls=150000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
335 if (Use[
"Likelihood"])
336 factory->BookMethod( dataloader, TMVA::Types::kLikelihood,
"Likelihood",
337 "H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmoothBkg[1]=10:NSmooth=1:NAvEvtPerBin=50" );
340 if (Use[
"LikelihoodD"])
341 factory->BookMethod( dataloader, TMVA::Types::kLikelihood,
"LikelihoodD",
342 "!H:!V:TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=Decorrelate" );
345 if (Use[
"LikelihoodPCA"])
346 factory->BookMethod( dataloader, TMVA::Types::kLikelihood,
"LikelihoodPCA",
347 "!H:!V:!TransformOutput:PDFInterpol=Spline2:NSmoothSig[0]=20:NSmoothBkg[0]=20:NSmooth=5:NAvEvtPerBin=50:VarTransform=PCA" );
350 if (Use[
"LikelihoodKDE"])
351 factory->BookMethod( dataloader, TMVA::Types::kLikelihood,
"LikelihoodKDE",
352 "!H:!V:!TransformOutput:PDFInterpol=KDE:KDEtype=Gauss:KDEiter=Adaptive:KDEFineFactor=0.3:KDEborder=None:NAvEvtPerBin=50" );
355 if (Use[
"LikelihoodMIX"])
356 factory->BookMethod( dataloader, TMVA::Types::kLikelihood,
"LikelihoodMIX",
357 "!H:!V:!TransformOutput:PDFInterpolSig[0]=KDE:PDFInterpolBkg[0]=KDE:PDFInterpolSig[1]=KDE:PDFInterpolBkg[1]=KDE:PDFInterpolSig[2]=Spline2:PDFInterpolBkg[2]=Spline2:PDFInterpolSig[3]=Spline2:PDFInterpolBkg[3]=Spline2:KDEtype=Gauss:KDEiter=Nonadaptive:KDEborder=None:NAvEvtPerBin=50" );
365 factory->BookMethod( dataloader, TMVA::Types::kPDERS,
"PDERS",
366 "!H:!V:NormTree=T:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600" );
369 factory->BookMethod( dataloader, TMVA::Types::kPDERS,
"PDERSD",
370 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=Decorrelate" );
373 factory->BookMethod( dataloader, TMVA::Types::kPDERS,
"PDERSPCA",
374 "!H:!V:VolumeRangeMode=Adaptive:KernelEstimator=Gauss:GaussSigma=0.3:NEventsMin=400:NEventsMax=600:VarTransform=PCA" );
378 factory->BookMethod( dataloader, TMVA::Types::kPDEFoam,
"PDEFoam",
379 "!H:!V:SigBgSeparate=F:TailCut=0.001:VolFrac=0.0666:nActiveCells=500:nSampl=2000:nBin=5:Nmin=100:Kernel=None:Compress=T" );
381 if (Use[
"PDEFoamBoost"])
382 factory->BookMethod( dataloader, TMVA::Types::kPDEFoam,
"PDEFoamBoost",
383 "!H:!V:Boost_Num=30:Boost_Transform=linear:SigBgSeparate=F:MaxDepth=4:UseYesNoCell=T:DTLogic=MisClassificationError:FillFoamWithOrigWeights=F:TailCut=0:nActiveCells=500:nBin=20:Nmin=400:Kernel=None:Compress=T" );
387 factory->BookMethod( dataloader, TMVA::Types::kKNN,
"KNN",
388 "H:nkNN=20:ScaleFrac=0.8:SigmaFact=1.0:Kernel=Gaus:UseKernel=F:UseWeight=T:!Trim" );
392 factory->BookMethod( dataloader, TMVA::Types::kHMatrix,
"HMatrix",
"!H:!V:VarTransform=None" );
396 factory->BookMethod( dataloader, TMVA::Types::kLD,
"LD",
"H:!V:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
400 factory->BookMethod( dataloader, TMVA::Types::kFisher,
"Fisher",
"H:!V:Fisher:VarTransform=None:CreateMVAPdfs:PDFInterpolMVAPdf=Spline2:NbinsMVAPdf=50:NsmoothMVAPdf=10" );
404 factory->BookMethod( dataloader, TMVA::Types::kFisher,
"FisherG",
"H:!V:VarTransform=Gauss" );
407 if (Use[
"BoostedFisher"])
408 factory->BookMethod( dataloader, TMVA::Types::kFisher,
"BoostedFisher",
409 "H:!V:Boost_Num=20:Boost_Transform=log:Boost_Type=AdaBoost:Boost_AdaBoostBeta=0.2:!Boost_DetailedMonitoring" );
413 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_MC",
414 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:SampleSize=100000:Sigma=0.1" );
417 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_GA",
418 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:PopSize=100:Cycles=2:Steps=5:Trim=True:SaveBestGen=1" );
421 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_SA",
422 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=SA:MaxCalls=15000:KernelTemp=IncAdaptive:InitialTemp=1e+6:MinTemp=1e-6:Eps=1e-10:UseDefaultScale" );
425 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_MT",
426 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=2:UseImprove:UseMinos:SetBatch" );
429 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_GAMT",
430 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=GA:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:Cycles=1:PopSize=5:Steps=5:Trim" );
433 factory->BookMethod( dataloader, TMVA::Types::kFDA,
"FDA_MCMT",
434 "H:!V:Formula=(0)+(1)*x0+(2)*x1+(3)*x2+(4)*x3:ParRanges=(-1,1);(-10,10);(-10,10);(-10,10);(-10,10):FitMethod=MC:Converger=MINUIT:ErrorLevel=1:PrintLevel=-1:FitStrategy=0:!UseImprove:!UseMinos:SetBatch:SampleSize=20" );
438 factory->BookMethod( dataloader, TMVA::Types::kMLP,
"MLP",
"H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:!UseRegulator" );
441 factory->BookMethod( dataloader, TMVA::Types::kMLP,
"MLPBFGS",
"H:!V:NeuronType=tanh:VarTransform=N:NCycles=600:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:!UseRegulator" );
444 factory->BookMethod( dataloader, TMVA::Types::kMLP,
"MLPBNN",
"H:!V:NeuronType=tanh:VarTransform=N:NCycles=60:HiddenLayers=N+5:TestRate=5:TrainingMethod=BFGS:UseRegulator" );
448 if (Use[
"DNN_CPU"] or Use[
"DNN_GPU"]) {
450 TString layoutString (
"Layout=TANH|128,TANH|128,TANH|128,LINEAR");
453 TString training0(
"LearningRate=1e-2,Momentum=0.9,Repetitions=1,"
454 "ConvergenceSteps=30,BatchSize=256,TestRepetitions=10,"
455 "WeightDecay=1e-4,Regularization=None,"
456 "DropConfig=0.0+0.5+0.5+0.5, Multithreading=True");
457 TString training1(
"LearningRate=1e-2,Momentum=0.9,Repetitions=1,"
458 "ConvergenceSteps=20,BatchSize=256,TestRepetitions=10,"
459 "WeightDecay=1e-4,Regularization=L2,"
460 "DropConfig=0.0+0.0+0.0+0.0, Multithreading=True");
461 TString training2(
"LearningRate=1e-3,Momentum=0.0,Repetitions=1,"
462 "ConvergenceSteps=20,BatchSize=256,TestRepetitions=10,"
463 "WeightDecay=1e-4,Regularization=L2,"
464 "DropConfig=0.0+0.0+0.0+0.0, Multithreading=True");
465 TString trainingStrategyString (
"TrainingStrategy=");
466 trainingStrategyString += training0 +
"|" + training1 +
"|" + training2;
469 TString dnnOptions (
"!H:V:ErrorStrategy=CROSSENTROPY:VarTransform=N:"
470 "WeightInitialization=XAVIERUNIFORM");
471 dnnOptions.Append (
":"); dnnOptions.Append (layoutString);
472 dnnOptions.Append (
":"); dnnOptions.Append (trainingStrategyString);
475 if (Use[
"DNN_GPU"]) {
476 TString gpuOptions = dnnOptions +
":Architecture=GPU";
477 factory->BookMethod(dataloader, TMVA::Types::kDL,
"DNN_GPU", gpuOptions);
480 if (Use[
"DNN_CPU"]) {
481 TString cpuOptions = dnnOptions +
":Architecture=CPU";
482 factory->BookMethod(dataloader, TMVA::Types::kDL,
"DNN_CPU", cpuOptions);
488 factory->BookMethod( dataloader, TMVA::Types::kCFMlpANN,
"CFMlpANN",
"!H:!V:NCycles=200:HiddenLayers=N+1,N" );
492 factory->BookMethod( dataloader, TMVA::Types::kTMlpANN,
"TMlpANN",
"!H:!V:NCycles=200:HiddenLayers=N+1,N:LearningMethod=BFGS:ValidationFraction=0.3" );
496 factory->BookMethod( dataloader, TMVA::Types::kSVM,
"SVM",
"Gamma=0.25:Tol=0.001:VarTransform=Norm" );
500 factory->BookMethod( dataloader, TMVA::Types::kBDT,
"BDTG",
501 "!H:!V:NTrees=1000:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.5:nCuts=20:MaxDepth=2" );
504 factory->BookMethod( dataloader, TMVA::Types::kBDT,
"BDT",
505 "!H:!V:NTrees=850:MinNodeSize=2.5%:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:UseBaggedBoost:BaggedSampleFraction=0.5:SeparationType=GiniIndex:nCuts=20" );
508 factory->BookMethod( dataloader, TMVA::Types::kBDT,
"BDTB",
509 "!H:!V:NTrees=400:BoostType=Bagging:SeparationType=GiniIndex:nCuts=20" );
512 factory->BookMethod( dataloader, TMVA::Types::kBDT,
"BDTD",
513 "!H:!V:NTrees=400:MinNodeSize=5%:MaxDepth=3:BoostType=AdaBoost:SeparationType=GiniIndex:nCuts=20:VarTransform=Decorrelate" );
516 factory->BookMethod( dataloader, TMVA::Types::kBDT,
"BDTF",
517 "!H:!V:NTrees=50:MinNodeSize=2.5%:UseFisherCuts:MaxDepth=3:BoostType=AdaBoost:AdaBoostBeta=0.5:SeparationType=GiniIndex:nCuts=20" );
521 factory->BookMethod( dataloader, TMVA::Types::kRuleFit,
"RuleFit",
522 "H:!V:RuleFitModule=RFTMVA:Model=ModRuleLinear:MinImp=0.001:RuleMinDist=0.001:NTrees=20:fEventsMin=0.01:fEventsMax=0.5:GDTau=-1.0:GDTauPrec=0.01:GDStep=0.01:GDNSteps=10000:GDErrScale=1.02" );
538 factory->TrainAllMethods();
541 factory->TestAllMethods();
544 factory->EvaluateAllMethods();
551 std::cout <<
"==> Wrote root file: " << outputFile->GetName() << std::endl;
552 std::cout <<
"==> TMVAClassification is done!" << std::endl;
557 if (!gROOT->IsBatch()) TMVA::TMVAGui( outfileName );
562 int main(
int argc,
char** argv )
566 for (
int i=1; i<argc; i++) {
567 TString regMethod(argv[i]);
568 if(regMethod==
"-b" || regMethod==
"--batch")
continue;
569 if (!methodList.IsNull()) methodList += TString(
",");
570 methodList += regMethod;
572 return TMVAClassification(methodList);