36 RooLandau::RooLandau(
const char *name,
const char *title, RooAbsReal& _x, RooAbsReal& _mean, RooAbsReal& _sigma) :
37 RooAbsPdf(name,title),
38 x(
"x",
"Dependent",this,_x),
39 mean(
"mean",
"Mean",this,_mean),
40 sigma(
"sigma",
"Width",this,_sigma)
42 RooHelpers::checkRangeOfParameters(
this, {&_sigma}, 0.0);
47 RooLandau::RooLandau(
const RooLandau& other,
const char* name) :
48 RooAbsPdf(other,name),
50 mean(
"mean",this,other.mean),
51 sigma(
"sigma",this,other.sigma)
57 Double_t RooLandau::evaluate()
const
59 return TMath::Landau(x, mean, sigma);
73 constexpr
double p1[5] = {0.4259894875,-0.1249762550, 0.03984243700, -0.006298287635, 0.001511162253};
74 constexpr
double q1[5] = {1.0 ,-0.3388260629, 0.09594393323, -0.01608042283, 0.003778942063};
76 constexpr
double p2[5] = {0.1788541609, 0.1173957403, 0.01488850518, -0.001394989411, 0.0001283617211};
77 constexpr
double q2[5] = {1.0 , 0.7428795082, 0.3153932961, 0.06694219548, 0.008790609714};
79 constexpr
double p3[5] = {0.1788544503, 0.09359161662,0.006325387654, 0.00006611667319,-0.000002031049101};
80 constexpr
double q3[5] = {1.0 , 0.6097809921, 0.2560616665, 0.04746722384, 0.006957301675};
82 constexpr
double p4[5] = {0.9874054407, 118.6723273, 849.2794360, -743.7792444, 427.0262186};
83 constexpr
double q4[5] = {1.0 , 106.8615961, 337.6496214, 2016.712389, 1597.063511};
85 constexpr
double p5[5] = {1.003675074, 167.5702434, 4789.711289, 21217.86767, -22324.94910};
86 constexpr
double q5[5] = {1.0 , 156.9424537, 3745.310488, 9834.698876, 66924.28357};
88 constexpr
double p6[5] = {1.000827619, 664.9143136, 62972.92665, 475554.6998, -5743609.109};
89 constexpr
double q6[5] = {1.0 , 651.4101098, 56974.73333, 165917.4725, -2815759.939};
91 constexpr
double a1[3] = {0.04166666667,-0.01996527778, 0.02709538966};
92 constexpr
double a2[2] = {-1.845568670,-4.284640743};
94 template<
class Tx,
class Tmean,
class Tsigma>
95 void compute(
size_t batchSize,
96 double * __restrict output,
97 Tx X, Tmean M, Tsigma S)
99 const double NaN = std::nan(
"");
100 constexpr
size_t block=256;
103 for (
size_t i=0; i<batchSize; i+=block) {
104 const size_t stop = (i+block < batchSize) ? block : batchSize-i ;
106 for (
size_t j=0; j<stop; j++) {
107 v[j] = (X[i+j]-M[i+j]) / S[i+j];
108 output[i+j] = (p2[0]+(p2[1]+(p2[2]+(p2[3]+p2[4]*v[j])*v[j])*v[j])*v[j]) /
109 (q2[0]+(q2[1]+(q2[2]+(q2[3]+q2[4]*v[j])*v[j])*v[j])*v[j]);
112 for (
size_t j=0; j<stop; j++) {
113 const bool mask = S[i+j] > 0;
117 if (!mask) v[j] = NaN;
122 for (
size_t j=0; j<stop; j++) {
126 output[i+j] = (p3[0]+(p3[1]+(p3[2]+(p3[3]+p3[4]*v[j])*v[j])*v[j])*v[j]) /
127 (q3[0]+(q3[1]+(q3[2]+(q3[3]+q3[4]*v[j])*v[j])*v[j])*v[j]);
128 }
else if (v[j] < 12) {
130 output[i+j] = u*u*(p4[0]+(p4[1]+(p4[2]+(p4[3]+p4[4]*u)*u)*u)*u) /
131 (q4[0]+(q4[1]+(q4[2]+(q4[3]+q4[4]*u)*u)*u)*u);
132 }
else if (v[j] < 50) {
134 output[i+j] = u*u*(p5[0]+(p5[1]+(p5[2]+(p5[3]+p5[4]*u)*u)*u)*u) /
135 (q5[0]+(q5[1]+(q5[2]+(q5[3]+q5[4]*u)*u)*u)*u);
136 }
else if (v[j] < 300) {
138 output[i+j] = u*u*(p6[0]+(p6[1]+(p6[2]+(p6[3]+p6[4]*u)*u)*u)*u) /
139 (q6[0]+(q6[1]+(q6[2]+(q6[3]+q6[4]*u)*u)*u)*u);
141 u = 1 / (v[j] -v[j]*std::log(v[j])/(v[j]+1) );
142 output[i+j] = u*u*(1 +(a2[0] +a2[1]*u)*u );
144 }
else if (v[j] < -1) {
146 u = std::exp(-v[j]-1);
147 output[i+j] = std::exp(-u)*std::sqrt(u)*
148 (p1[0]+(p1[1]+(p1[2]+(p1[3]+p1[4]*v[j])*v[j])*v[j])*v[j])/
149 (q1[0]+(q1[1]+(q1[2]+(q1[3]+q1[4]*v[j])*v[j])*v[j])*v[j]);
151 u = std::exp(v[j]+1.0);
152 if (u < 1e-10) output[i+j] = 0.0;
156 output[i+j] = 0.3989422803*(ue/us)*(1+(a1[0]+(a1[1]+a1[2]*u)*u)*u);
176 RooSpan<double> RooLandau::evaluateBatch(std::size_t begin, std::size_t batchSize)
const {
177 using namespace BatchHelpers;
178 auto xData = x.getValBatch(begin, batchSize);
179 auto meanData = mean.getValBatch(begin, batchSize);
180 auto sigmaData = sigma.getValBatch(begin, batchSize);
181 const bool batchX = !xData.empty();
182 const bool batchMean = !meanData.empty();
183 const bool batchSigma = !sigmaData.empty();
185 if (!batchX && !batchMean && !batchSigma) {
188 batchSize = findSize({ xData, meanData, sigmaData });
189 auto output = _batchData.makeWritableBatchUnInit(begin, batchSize);
191 if (batchX && !batchMean && !batchSigma ) {
192 compute(batchSize, output.data(), xData, BracketAdapter<double>(mean), BracketAdapter<double>(sigma));
194 else if (!batchX && batchMean && !batchSigma ) {
195 compute(batchSize, output.data(), BracketAdapter<double>(x), meanData, BracketAdapter<double>(sigma));
197 else if (batchX && batchMean && !batchSigma ) {
198 compute(batchSize, output.data(), xData, meanData, BracketAdapter<double>(sigma));
200 else if (!batchX && !batchMean && batchSigma ) {
201 compute(batchSize, output.data(), BracketAdapter<double>(x), BracketAdapter<double>(mean), sigmaData);
203 else if (batchX && !batchMean && batchSigma ) {
204 compute(batchSize, output.data(), xData, BracketAdapter<double>(mean), sigmaData);
206 else if (!batchX && batchMean && batchSigma ) {
207 compute(batchSize, output.data(), BracketAdapter<double>(x), meanData, sigmaData);
209 else if (batchX && batchMean && batchSigma ) {
210 compute(batchSize, output.data(), xData, meanData, sigmaData);
217 Int_t RooLandau::getGenerator(
const RooArgSet& directVars, RooArgSet &generateVars, Bool_t )
const
219 if (matchArgs(directVars,generateVars,x))
return 1 ;
225 void RooLandau::generateEvent(Int_t code)
227 assert(1 == code); (void)code;
230 xgen = RooRandom::randomGenerator()->Landau(mean,sigma);
231 if (xgen<x.max() && xgen>x.min()) {