Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
MethodRuleFit.cxx
Go to the documentation of this file.
1 // @(#)root/tmva $Id$
2 // Author: Fredrik Tegenfeldt
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodRuleFit *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * Implementation (see header file for description) *
12  * *
13  * Authors (alphabetical): *
14  * Fredrik Tegenfeldt <Fredrik.Tegenfeldt@cern.ch> - Iowa State U., USA *
15  * *
16  * Copyright (c) 2005: *
17  * CERN, Switzerland *
18  * Iowa State U. *
19  * MPI-K Heidelberg, Germany *
20  * *
21  * Redistribution and use in source and binary forms, with or without *
22  * modification, are permitted according to the terms listed in LICENSE *
23  * (http://tmva.sourceforge.net/LICENSE) *
24  **********************************************************************************/
25 
26 /*! \class TMVA::MethodRuleFit
27 \ingroup TMVA
28 J Friedman's RuleFit method
29 */
30 
31 #include "TMVA/MethodRuleFit.h"
32 
33 #include "TMVA/ClassifierFactory.h"
34 #include "TMVA/Config.h"
35 #include "TMVA/Configurable.h"
36 #include "TMVA/CrossEntropy.h"
37 #include "TMVA/DataSet.h"
38 #include "TMVA/DecisionTree.h"
39 #include "TMVA/GiniIndex.h"
40 #include "TMVA/IMethod.h"
41 #include "TMVA/MethodBase.h"
43 #include "TMVA/MsgLogger.h"
44 #include "TMVA/Ranking.h"
45 #include "TMVA/RuleFitAPI.h"
46 #include "TMVA/SdivSqrtSplusB.h"
47 #include "TMVA/SeparationBase.h"
48 #include "TMVA/Timer.h"
49 #include "TMVA/Tools.h"
50 #include "TMVA/Types.h"
51 
52 #include "Riostream.h"
53 #include "TRandom3.h"
54 #include "TMath.h"
55 #include "TMatrix.h"
56 #include "TDirectory.h"
57 
58 #include <algorithm>
59 #include <list>
60 #include <random>
61 
62 using std::min;
63 
64 REGISTER_METHOD(RuleFit)
65 
66 ClassImp(TMVA::MethodRuleFit);
67 
68 ////////////////////////////////////////////////////////////////////////////////
69 /// standard constructor
70 
71  TMVA::MethodRuleFit::MethodRuleFit( const TString& jobName,
72  const TString& methodTitle,
73  DataSetInfo& theData,
74  const TString& theOption) :
75  MethodBase( jobName, Types::kRuleFit, methodTitle, theData, theOption)
76  , fSignalFraction(0)
77  , fNTImportance(0)
78  , fNTCoefficient(0)
79  , fNTSupport(0)
80  , fNTNcuts(0)
81  , fNTNvars(0)
82  , fNTPtag(0)
83  , fNTPss(0)
84  , fNTPsb(0)
85  , fNTPbs(0)
86  , fNTPbb(0)
87  , fNTSSB(0)
88  , fNTType(0)
89  , fUseRuleFitJF(kFALSE)
90  , fRFNrules(0)
91  , fRFNendnodes(0)
92  , fNTrees(0)
93  , fTreeEveFrac(0)
94  , fSepType(0)
95  , fMinFracNEve(0)
96  , fMaxFracNEve(0)
97  , fNCuts(0)
98  , fPruneMethod(TMVA::DecisionTree::kCostComplexityPruning)
99  , fPruneStrength(0)
100  , fUseBoost(kFALSE)
101  , fGDPathEveFrac(0)
102  , fGDValidEveFrac(0)
103  , fGDTau(0)
104  , fGDTauPrec(0)
105  , fGDTauMin(0)
106  , fGDTauMax(0)
107  , fGDTauScan(0)
108  , fGDPathStep(0)
109  , fGDNPathSteps(0)
110  , fGDErrScale(0)
111  , fMinimp(0)
112  , fRuleMinDist(0)
113  , fLinQuantile(0)
114 {
115  fMonitorNtuple = NULL;
116 }
117 
118 ////////////////////////////////////////////////////////////////////////////////
119 /// constructor from weight file
120 
121 TMVA::MethodRuleFit::MethodRuleFit( DataSetInfo& theData,
122  const TString& theWeightFile) :
123  MethodBase( Types::kRuleFit, theData, theWeightFile)
124  , fSignalFraction(0)
125  , fNTImportance(0)
126  , fNTCoefficient(0)
127  , fNTSupport(0)
128  , fNTNcuts(0)
129  , fNTNvars(0)
130  , fNTPtag(0)
131  , fNTPss(0)
132  , fNTPsb(0)
133  , fNTPbs(0)
134  , fNTPbb(0)
135  , fNTSSB(0)
136  , fNTType(0)
137  , fUseRuleFitJF(kFALSE)
138  , fRFNrules(0)
139  , fRFNendnodes(0)
140  , fNTrees(0)
141  , fTreeEveFrac(0)
142  , fSepType(0)
143  , fMinFracNEve(0)
144  , fMaxFracNEve(0)
145  , fNCuts(0)
146  , fPruneMethod(TMVA::DecisionTree::kCostComplexityPruning)
147  , fPruneStrength(0)
148  , fUseBoost(kFALSE)
149  , fGDPathEveFrac(0)
150  , fGDValidEveFrac(0)
151  , fGDTau(0)
152  , fGDTauPrec(0)
153  , fGDTauMin(0)
154  , fGDTauMax(0)
155  , fGDTauScan(0)
156  , fGDPathStep(0)
157  , fGDNPathSteps(0)
158  , fGDErrScale(0)
159  , fMinimp(0)
160  , fRuleMinDist(0)
161  , fLinQuantile(0)
162 {
163  fMonitorNtuple = NULL;
164 }
165 
166 ////////////////////////////////////////////////////////////////////////////////
167 /// destructor
168 
169 TMVA::MethodRuleFit::~MethodRuleFit( void )
170 {
171  for (UInt_t i=0; i<fEventSample.size(); i++) delete fEventSample[i];
172  for (UInt_t i=0; i<fForest.size(); i++) delete fForest[i];
173 }
174 
175 ////////////////////////////////////////////////////////////////////////////////
176 /// RuleFit can handle classification with 2 classes
177 
178 Bool_t TMVA::MethodRuleFit::HasAnalysisType( Types::EAnalysisType type, UInt_t numberClasses, UInt_t /*numberTargets*/ )
179 {
180  if (type == Types::kClassification && numberClasses == 2) return kTRUE;
181  return kFALSE;
182 }
183 
184 ////////////////////////////////////////////////////////////////////////////////
185 /// define the options (their key words) that can be set in the option string
186 /// know options.
187 ///
188 /// #### general
189 ///
190 /// - RuleFitModule <string>
191 /// available values are:
192 /// - RFTMVA - use TMVA implementation
193 /// - RFFriedman - use Friedmans original implementation
194 ///
195 /// #### Path search (fitting)
196 ///
197 /// - GDTau <float> gradient-directed path: fit threshold, default
198 /// - GDTauPrec <float> gradient-directed path: precision of estimated tau
199 /// - GDStep <float> gradient-directed path: step size
200 /// - GDNSteps <float> gradient-directed path: number of steps
201 /// - GDErrScale <float> stop scan when error>scale*errmin
202 ///
203 /// #### Tree generation
204 ///
205 /// - fEventsMin <float> minimum fraction of events in a splittable node
206 /// - fEventsMax <float> maximum fraction of events in a splittable node
207 /// - nTrees <float> number of trees in forest.
208 /// - ForestType <string>
209 /// available values are:
210 /// - Random - create forest using random subsample and only random variables subset at each node
211 /// - AdaBoost - create forest with boosted events
212 ///
213 /// #### Model creation
214 ///
215 /// - RuleMinDist <float> min distance allowed between rules
216 /// - MinImp <float> minimum rule importance accepted
217 /// - Model <string> model to be used
218 /// available values are:
219 /// - ModRuleLinear <default>
220 /// - ModRule
221 /// - ModLinear
222 ///
223 /// #### Friedmans module
224 ///
225 /// - RFWorkDir <string> directory where Friedmans module (rf_go.exe) is installed
226 /// - RFNrules <int> maximum number of rules allowed
227 /// - RFNendnodes <int> average number of end nodes in the forest of trees
228 
229 void TMVA::MethodRuleFit::DeclareOptions()
230 {
231  DeclareOptionRef(fGDTau=-1, "GDTau", "Gradient-directed (GD) path: default fit cut-off");
232  DeclareOptionRef(fGDTauPrec=0.01, "GDTauPrec", "GD path: precision of tau");
233  DeclareOptionRef(fGDPathStep=0.01, "GDStep", "GD path: step size");
234  DeclareOptionRef(fGDNPathSteps=10000, "GDNSteps", "GD path: number of steps");
235  DeclareOptionRef(fGDErrScale=1.1, "GDErrScale", "Stop scan when error > scale*errmin");
236  DeclareOptionRef(fLinQuantile, "LinQuantile", "Quantile of linear terms (removes outliers)");
237  DeclareOptionRef(fGDPathEveFrac=0.5, "GDPathEveFrac", "Fraction of events used for the path search");
238  DeclareOptionRef(fGDValidEveFrac=0.5, "GDValidEveFrac", "Fraction of events used for the validation");
239  // tree options
240  DeclareOptionRef(fMinFracNEve=0.1, "fEventsMin", "Minimum fraction of events in a splittable node");
241  DeclareOptionRef(fMaxFracNEve=0.9, "fEventsMax", "Maximum fraction of events in a splittable node");
242  DeclareOptionRef(fNTrees=20, "nTrees", "Number of trees in forest.");
243 
244  DeclareOptionRef(fForestTypeS="AdaBoost", "ForestType", "Method to use for forest generation (AdaBoost or RandomForest)");
245  AddPreDefVal(TString("AdaBoost"));
246  AddPreDefVal(TString("Random"));
247  // rule cleanup options
248  DeclareOptionRef(fRuleMinDist=0.001, "RuleMinDist", "Minimum distance between rules");
249  DeclareOptionRef(fMinimp=0.01, "MinImp", "Minimum rule importance accepted");
250  // rule model option
251  DeclareOptionRef(fModelTypeS="ModRuleLinear", "Model", "Model to be used");
252  AddPreDefVal(TString("ModRule"));
253  AddPreDefVal(TString("ModRuleLinear"));
254  AddPreDefVal(TString("ModLinear"));
255  DeclareOptionRef(fRuleFitModuleS="RFTMVA", "RuleFitModule","Which RuleFit module to use");
256  AddPreDefVal(TString("RFTMVA"));
257  AddPreDefVal(TString("RFFriedman"));
258 
259  DeclareOptionRef(fRFWorkDir="./rulefit", "RFWorkDir", "Friedman\'s RuleFit module (RFF): working dir");
260  DeclareOptionRef(fRFNrules=2000, "RFNrules", "RFF: Mximum number of rules");
261  DeclareOptionRef(fRFNendnodes=4, "RFNendnodes", "RFF: Average number of end nodes");
262 }
263 
264 ////////////////////////////////////////////////////////////////////////////////
265 /// process the options specified by the user
266 
267 void TMVA::MethodRuleFit::ProcessOptions()
268 {
269  if (IgnoreEventsWithNegWeightsInTraining()) {
270  Log() << kFATAL << "Mechanism to ignore events with negative weights in training not yet available for method: "
271  << GetMethodTypeName()
272  << " --> please remove \"IgnoreNegWeightsInTraining\" option from booking string."
273  << Endl;
274  }
275 
276  fRuleFitModuleS.ToLower();
277  if (fRuleFitModuleS == "rftmva") fUseRuleFitJF = kFALSE;
278  else if (fRuleFitModuleS == "rffriedman") fUseRuleFitJF = kTRUE;
279  else fUseRuleFitJF = kTRUE;
280 
281  fSepTypeS.ToLower();
282  if (fSepTypeS == "misclassificationerror") fSepType = new MisClassificationError();
283  else if (fSepTypeS == "giniindex") fSepType = new GiniIndex();
284  else if (fSepTypeS == "crossentropy") fSepType = new CrossEntropy();
285  else fSepType = new SdivSqrtSplusB();
286 
287  fModelTypeS.ToLower();
288  if (fModelTypeS == "modlinear" ) fRuleFit.SetModelLinear();
289  else if (fModelTypeS == "modrule" ) fRuleFit.SetModelRules();
290  else fRuleFit.SetModelFull();
291 
292  fPruneMethodS.ToLower();
293  if (fPruneMethodS == "expectederror" ) fPruneMethod = DecisionTree::kExpectedErrorPruning;
294  else if (fPruneMethodS == "costcomplexity" ) fPruneMethod = DecisionTree::kCostComplexityPruning;
295  else fPruneMethod = DecisionTree::kNoPruning;
296 
297  fForestTypeS.ToLower();
298  if (fForestTypeS == "random" ) fUseBoost = kFALSE;
299  else if (fForestTypeS == "adaboost" ) fUseBoost = kTRUE;
300  else fUseBoost = kTRUE;
301  //
302  // if creating the forest by boosting the events
303  // the full training sample is used per tree
304  // -> only true for the TMVA version of RuleFit.
305  if (fUseBoost && (!fUseRuleFitJF)) fTreeEveFrac = 1.0;
306 
307  // check event fraction for tree generation
308  // if <0 set to automatic number
309  if (fTreeEveFrac<=0) {
310  Int_t nevents = Data()->GetNTrainingEvents();
311  Double_t n = static_cast<Double_t>(nevents);
312  fTreeEveFrac = min( 0.5, (100.0 +6.0*sqrt(n))/n);
313  }
314  // verify ranges of options
315  VerifyRange(Log(), "nTrees", fNTrees,0,100000,20);
316  VerifyRange(Log(), "MinImp", fMinimp,0.0,1.0,0.0);
317  VerifyRange(Log(), "GDTauPrec", fGDTauPrec,1e-5,5e-1);
318  VerifyRange(Log(), "GDTauMin", fGDTauMin,0.0,1.0);
319  VerifyRange(Log(), "GDTauMax", fGDTauMax,fGDTauMin,1.0);
320  VerifyRange(Log(), "GDPathStep", fGDPathStep,0.0,100.0,0.01);
321  VerifyRange(Log(), "GDErrScale", fGDErrScale,1.0,100.0,1.1);
322  VerifyRange(Log(), "GDPathEveFrac", fGDPathEveFrac,0.01,0.9,0.5);
323  VerifyRange(Log(), "GDValidEveFrac",fGDValidEveFrac,0.01,1.0-fGDPathEveFrac,1.0-fGDPathEveFrac);
324  VerifyRange(Log(), "fEventsMin", fMinFracNEve,0.0,1.0);
325  VerifyRange(Log(), "fEventsMax", fMaxFracNEve,fMinFracNEve,1.0);
326 
327  fRuleFit.GetRuleEnsemblePtr()->SetLinQuantile(fLinQuantile);
328  fRuleFit.GetRuleFitParamsPtr()->SetGDTauRange(fGDTauMin,fGDTauMax);
329  fRuleFit.GetRuleFitParamsPtr()->SetGDTau(fGDTau);
330  fRuleFit.GetRuleFitParamsPtr()->SetGDTauPrec(fGDTauPrec);
331  fRuleFit.GetRuleFitParamsPtr()->SetGDTauScan(fGDTauScan);
332  fRuleFit.GetRuleFitParamsPtr()->SetGDPathStep(fGDPathStep);
333  fRuleFit.GetRuleFitParamsPtr()->SetGDNPathSteps(fGDNPathSteps);
334  fRuleFit.GetRuleFitParamsPtr()->SetGDErrScale(fGDErrScale);
335  fRuleFit.SetImportanceCut(fMinimp);
336  fRuleFit.SetRuleMinDist(fRuleMinDist);
337 
338 
339  // check if Friedmans module is used.
340  // print a message concerning the options.
341  if (fUseRuleFitJF) {
342  Log() << kINFO << "" << Endl;
343  Log() << kINFO << "--------------------------------------" <<Endl;
344  Log() << kINFO << "Friedmans RuleFit module is selected." << Endl;
345  Log() << kINFO << "Only the following options are used:" << Endl;
346  Log() << kINFO << Endl;
347  Log() << kINFO << gTools().Color("bold") << " Model" << gTools().Color("reset") << Endl;
348  Log() << kINFO << gTools().Color("bold") << " RFWorkDir" << gTools().Color("reset") << Endl;
349  Log() << kINFO << gTools().Color("bold") << " RFNrules" << gTools().Color("reset") << Endl;
350  Log() << kINFO << gTools().Color("bold") << " RFNendnodes" << gTools().Color("reset") << Endl;
351  Log() << kINFO << gTools().Color("bold") << " GDNPathSteps" << gTools().Color("reset") << Endl;
352  Log() << kINFO << gTools().Color("bold") << " GDPathStep" << gTools().Color("reset") << Endl;
353  Log() << kINFO << gTools().Color("bold") << " GDErrScale" << gTools().Color("reset") << Endl;
354  Log() << kINFO << "--------------------------------------" <<Endl;
355  Log() << kINFO << Endl;
356  }
357 
358  // Select what weight to use in the 'importance' rule visualisation plots.
359  // Note that if UseCoefficientsVisHists() is selected, the following weight is used:
360  // w = rule coefficient * rule support
361  // The support is a positive number which is 0 if no events are accepted by the rule.
362  // Normally the importance gives more useful information.
363  //
364  //fRuleFit.UseCoefficientsVisHists();
365  fRuleFit.UseImportanceVisHists();
366 
367  fRuleFit.SetMsgType( Log().GetMinType() );
368 
369  if (HasTrainingTree()) InitEventSample();
370 
371 }
372 
373 ////////////////////////////////////////////////////////////////////////////////
374 /// initialize the monitoring ntuple
375 
376 void TMVA::MethodRuleFit::InitMonitorNtuple()
377 {
378  BaseDir()->cd();
379  fMonitorNtuple= new TTree("MonitorNtuple_RuleFit","RuleFit variables");
380  fMonitorNtuple->Branch("importance",&fNTImportance,"importance/D");
381  fMonitorNtuple->Branch("support",&fNTSupport,"support/D");
382  fMonitorNtuple->Branch("coefficient",&fNTCoefficient,"coefficient/D");
383  fMonitorNtuple->Branch("ncuts",&fNTNcuts,"ncuts/I");
384  fMonitorNtuple->Branch("nvars",&fNTNvars,"nvars/I");
385  fMonitorNtuple->Branch("type",&fNTType,"type/I");
386  fMonitorNtuple->Branch("ptag",&fNTPtag,"ptag/D");
387  fMonitorNtuple->Branch("pss",&fNTPss,"pss/D");
388  fMonitorNtuple->Branch("psb",&fNTPsb,"psb/D");
389  fMonitorNtuple->Branch("pbs",&fNTPbs,"pbs/D");
390  fMonitorNtuple->Branch("pbb",&fNTPbb,"pbb/D");
391  fMonitorNtuple->Branch("soversb",&fNTSSB,"soversb/D");
392 }
393 
394 ////////////////////////////////////////////////////////////////////////////////
395 /// default initialization
396 
397 void TMVA::MethodRuleFit::Init()
398 {
399  // the minimum requirement to declare an event signal-like
400  SetSignalReferenceCut( 0.0 );
401 
402  // set variables that used to be options
403  // any modifications are then made in ProcessOptions()
404  fLinQuantile = 0.025; // Quantile of linear terms (remove outliers)
405  fTreeEveFrac = -1.0; // Fraction of events used to train each tree
406  fNCuts = 20; // Number of steps during node cut optimisation
407  fSepTypeS = "GiniIndex"; // Separation criterion for node splitting; see BDT
408  fPruneMethodS = "NONE"; // Pruning method; see BDT
409  fPruneStrength = 3.5; // Pruning strength; see BDT
410  fGDTauMin = 0.0; // Gradient-directed path: min fit threshold (tau)
411  fGDTauMax = 1.0; // Gradient-directed path: max fit threshold (tau)
412  fGDTauScan = 1000; // Gradient-directed path: number of points scanning for best tau
413 
414 }
415 
416 ////////////////////////////////////////////////////////////////////////////////
417 /// write all Events from the Tree into a vector of Events, that are
418 /// more easily manipulated.
419 /// This method should never be called without existing trainingTree, as it
420 /// the vector of events from the ROOT training tree
421 
422 void TMVA::MethodRuleFit::InitEventSample( void )
423 {
424  if (Data()->GetNEvents()==0) Log() << kFATAL << "<Init> Data().TrainingTree() is zero pointer" << Endl;
425 
426  Int_t nevents = Data()->GetNEvents();
427  for (Int_t ievt=0; ievt<nevents; ievt++){
428  const Event * ev = GetEvent(ievt);
429  fEventSample.push_back( new Event(*ev));
430  }
431  if (fTreeEveFrac<=0) {
432  Double_t n = static_cast<Double_t>(nevents);
433  fTreeEveFrac = min( 0.5, (100.0 +6.0*sqrt(n))/n);
434  }
435  if (fTreeEveFrac>1.0) fTreeEveFrac=1.0;
436  //
437  std::shuffle(fEventSample.begin(), fEventSample.end(), std::default_random_engine{});
438  //
439  Log() << kDEBUG << "Set sub-sample fraction to " << fTreeEveFrac << Endl;
440 }
441 
442 ////////////////////////////////////////////////////////////////////////////////
443 
444 void TMVA::MethodRuleFit::Train( void )
445 {
446  TMVA::DecisionTreeNode::fgIsTraining=true;
447  // training of rules
448 
449  if(!IsSilentFile()) InitMonitorNtuple();
450 
451  // fill the STL Vector with the event sample
452  this->InitEventSample();
453 
454  if (fUseRuleFitJF) {
455  TrainJFRuleFit();
456  }
457  else {
458  TrainTMVARuleFit();
459  }
460  fRuleFit.GetRuleEnsemblePtr()->ClearRuleMap();
461  TMVA::DecisionTreeNode::fgIsTraining=false;
462  ExitFromTraining();
463 }
464 
465 ////////////////////////////////////////////////////////////////////////////////
466 /// training of rules using TMVA implementation
467 
468 void TMVA::MethodRuleFit::TrainTMVARuleFit( void )
469 {
470  if (IsNormalised()) Log() << kFATAL << "\"Normalise\" option cannot be used with RuleFit; "
471  << "please remove the option from the configuration string, or "
472  << "use \"!Normalise\""
473  << Endl;
474 
475  // timer
476  Timer timer( 1, GetName() );
477 
478  // test tree nmin cut -> for debug purposes
479  // the routine will generate trees with stopping cut on N(eve) given by
480  // a fraction between [20,N(eve)-1].
481  //
482  // MakeForestRnd();
483  // exit(1);
484  //
485 
486  // Init RuleFit object and create rule ensemble
487  // + make forest & rules
488  fRuleFit.Initialize( this );
489 
490  // Make forest of decision trees
491  // if (fRuleFit.GetRuleEnsemble().DoRules()) fRuleFit.MakeForest();
492 
493  // Fit the rules
494  Log() << kDEBUG << "Fitting rule coefficients ..." << Endl;
495  fRuleFit.FitCoefficients();
496 
497  // Calculate importance
498  Log() << kDEBUG << "Computing rule and variable importance" << Endl;
499  fRuleFit.CalcImportance();
500 
501  // Output results and fill monitor ntuple
502  fRuleFit.GetRuleEnsemblePtr()->Print();
503  //
504  if(!IsSilentFile())
505  {
506  Log() << kDEBUG << "Filling rule ntuple" << Endl;
507  UInt_t nrules = fRuleFit.GetRuleEnsemble().GetRulesConst().size();
508  const Rule *rule;
509  for (UInt_t i=0; i<nrules; i++ ) {
510  rule = fRuleFit.GetRuleEnsemble().GetRulesConst(i);
511  fNTImportance = rule->GetRelImportance();
512  fNTSupport = rule->GetSupport();
513  fNTCoefficient = rule->GetCoefficient();
514  fNTType = (rule->IsSignalRule() ? 1:-1 );
515  fNTNvars = rule->GetRuleCut()->GetNvars();
516  fNTNcuts = rule->GetRuleCut()->GetNcuts();
517  fNTPtag = fRuleFit.GetRuleEnsemble().GetRulePTag(i); // should be identical with support
518  fNTPss = fRuleFit.GetRuleEnsemble().GetRulePSS(i);
519  fNTPsb = fRuleFit.GetRuleEnsemble().GetRulePSB(i);
520  fNTPbs = fRuleFit.GetRuleEnsemble().GetRulePBS(i);
521  fNTPbb = fRuleFit.GetRuleEnsemble().GetRulePBB(i);
522  fNTSSB = rule->GetSSB();
523  fMonitorNtuple->Fill();
524  }
525 
526  fRuleFit.MakeVisHists();
527  fRuleFit.MakeDebugHists();
528  }
529  Log() << kDEBUG << "Training done" << Endl;
530 
531 }
532 
533 ////////////////////////////////////////////////////////////////////////////////
534 /// training of rules using Jerome Friedmans implementation
535 
536 void TMVA::MethodRuleFit::TrainJFRuleFit( void )
537 {
538  fRuleFit.InitPtrs( this );
539  Data()->SetCurrentType(Types::kTraining);
540  UInt_t nevents = Data()->GetNTrainingEvents();
541  std::vector<const TMVA::Event*> tmp;
542  for (Long64_t ievt=0; ievt<nevents; ievt++) {
543  const Event *event = GetEvent(ievt);
544  tmp.push_back(event);
545  }
546  fRuleFit.SetTrainingEvents( tmp );
547 
548  RuleFitAPI *rfAPI = new RuleFitAPI( this, &fRuleFit, Log().GetMinType() );
549 
550  rfAPI->WelcomeMessage();
551 
552  // timer
553  Timer timer( 1, GetName() );
554 
555  Log() << kINFO << "Training ..." << Endl;
556  rfAPI->TrainRuleFit();
557 
558  Log() << kDEBUG << "reading model summary from rf_go.exe output" << Endl;
559  rfAPI->ReadModelSum();
560 
561  // fRuleFit.GetRuleEnsemblePtr()->MakeRuleMap();
562 
563  Log() << kDEBUG << "calculating rule and variable importance" << Endl;
564  fRuleFit.CalcImportance();
565 
566  // Output results and fill monitor ntuple
567  fRuleFit.GetRuleEnsemblePtr()->Print();
568  //
569  if(!IsSilentFile())fRuleFit.MakeVisHists();
570 
571  delete rfAPI;
572 
573  Log() << kDEBUG << "done training" << Endl;
574 }
575 
576 ////////////////////////////////////////////////////////////////////////////////
577 /// computes ranking of input variables
578 
579 const TMVA::Ranking* TMVA::MethodRuleFit::CreateRanking()
580 {
581  // create the ranking object
582  fRanking = new Ranking( GetName(), "Importance" );
583 
584  for (UInt_t ivar=0; ivar<GetNvar(); ivar++) {
585  fRanking->AddRank( Rank( GetInputLabel(ivar), fRuleFit.GetRuleEnsemble().GetVarImportance(ivar) ) );
586  }
587 
588  return fRanking;
589 }
590 
591 ////////////////////////////////////////////////////////////////////////////////
592 /// add the rules to XML node
593 
594 void TMVA::MethodRuleFit::AddWeightsXMLTo( void* parent ) const
595 {
596  fRuleFit.GetRuleEnsemble().AddXMLTo( parent );
597 }
598 
599 ////////////////////////////////////////////////////////////////////////////////
600 /// read rules from an std::istream
601 
602 void TMVA::MethodRuleFit::ReadWeightsFromStream( std::istream & istr )
603 {
604  fRuleFit.GetRuleEnsemblePtr()->ReadRaw( istr );
605 }
606 
607 ////////////////////////////////////////////////////////////////////////////////
608 /// read rules from XML node
609 
610 void TMVA::MethodRuleFit::ReadWeightsFromXML( void* wghtnode )
611 {
612  fRuleFit.GetRuleEnsemblePtr()->ReadFromXML( wghtnode );
613 }
614 
615 ////////////////////////////////////////////////////////////////////////////////
616 /// returns MVA value for given event
617 
618 Double_t TMVA::MethodRuleFit::GetMvaValue( Double_t* err, Double_t* errUpper )
619 {
620  // cannot determine error
621  NoErrorCalc(err, errUpper);
622 
623  return fRuleFit.EvalEvent( *GetEvent() );
624 }
625 
626 ////////////////////////////////////////////////////////////////////////////////
627 /// write special monitoring histograms to file (here ntuple)
628 
629 void TMVA::MethodRuleFit::WriteMonitoringHistosToFile( void ) const
630 {
631  BaseDir()->cd();
632  Log() << kINFO << "Write monitoring ntuple to file: " << BaseDir()->GetPath() << Endl;
633  fMonitorNtuple->Write();
634 }
635 
636 ////////////////////////////////////////////////////////////////////////////////
637 /// write specific classifier response
638 
639 void TMVA::MethodRuleFit::MakeClassSpecific( std::ostream& fout, const TString& className ) const
640 {
641  Int_t dp = fout.precision();
642  fout << " // not implemented for class: \"" << className << "\"" << std::endl;
643  fout << "};" << std::endl;
644  fout << "void " << className << "::Initialize(){}" << std::endl;
645  fout << "void " << className << "::Clear(){}" << std::endl;
646  fout << "double " << className << "::GetMvaValue__( const std::vector<double>& inputValues ) const {" << std::endl;
647  fout << " double rval=" << std::setprecision(10) << fRuleFit.GetRuleEnsemble().GetOffset() << ";" << std::endl;
648  MakeClassRuleCuts(fout);
649  MakeClassLinear(fout);
650  fout << " return rval;" << std::endl;
651  fout << "}" << std::endl;
652  fout << std::setprecision(dp);
653 }
654 
655 ////////////////////////////////////////////////////////////////////////////////
656 /// print out the rule cuts
657 
658 void TMVA::MethodRuleFit::MakeClassRuleCuts( std::ostream& fout ) const
659 {
660  Int_t dp = fout.precision();
661  if (!fRuleFit.GetRuleEnsemble().DoRules()) {
662  fout << " //" << std::endl;
663  fout << " // ==> MODEL CONTAINS NO RULES <==" << std::endl;
664  fout << " //" << std::endl;
665  return;
666  }
667  const RuleEnsemble *rens = &(fRuleFit.GetRuleEnsemble());
668  const std::vector< Rule* > *rules = &(rens->GetRulesConst());
669  const RuleCut *ruleCut;
670  //
671  std::list< std::pair<Double_t,Int_t> > sortedRules;
672  for (UInt_t ir=0; ir<rules->size(); ir++) {
673  sortedRules.push_back( std::pair<Double_t,Int_t>( (*rules)[ir]->GetImportance()/rens->GetImportanceRef(),ir ) );
674  }
675  sortedRules.sort();
676  //
677  fout << " //" << std::endl;
678  fout << " // here follows all rules ordered in importance (most important first)" << std::endl;
679  fout << " // at the end of each line, the relative importance of the rule is given" << std::endl;
680  fout << " //" << std::endl;
681  //
682  for ( std::list< std::pair<double,int> >::reverse_iterator itpair = sortedRules.rbegin();
683  itpair != sortedRules.rend(); ++itpair ) {
684  UInt_t ir = itpair->second;
685  Double_t impr = itpair->first;
686  ruleCut = (*rules)[ir]->GetRuleCut();
687  if (impr<rens->GetImportanceCut()) fout << " //" << std::endl;
688  fout << " if (" << std::flush;
689  for (UInt_t ic=0; ic<ruleCut->GetNvars(); ic++) {
690  Double_t sel = ruleCut->GetSelector(ic);
691  Double_t valmin = ruleCut->GetCutMin(ic);
692  Double_t valmax = ruleCut->GetCutMax(ic);
693  Bool_t domin = ruleCut->GetCutDoMin(ic);
694  Bool_t domax = ruleCut->GetCutDoMax(ic);
695  //
696  if (ic>0) fout << "&&" << std::flush;
697  if (domin) {
698  fout << "(" << std::setprecision(10) << valmin << std::flush;
699  fout << "<inputValues[" << sel << "])" << std::flush;
700  }
701  if (domax) {
702  if (domin) fout << "&&" << std::flush;
703  fout << "(inputValues[" << sel << "]" << std::flush;
704  fout << "<" << std::setprecision(10) << valmax << ")" <<std::flush;
705  }
706  }
707  fout << ") rval+=" << std::setprecision(10) << (*rules)[ir]->GetCoefficient() << ";" << std::flush;
708  fout << " // importance = " << Form("%3.3f",impr) << std::endl;
709  }
710  fout << std::setprecision(dp);
711 }
712 
713 ////////////////////////////////////////////////////////////////////////////////
714 /// print out the linear terms
715 
716 void TMVA::MethodRuleFit::MakeClassLinear( std::ostream& fout ) const
717 {
718  if (!fRuleFit.GetRuleEnsemble().DoLinear()) {
719  fout << " //" << std::endl;
720  fout << " // ==> MODEL CONTAINS NO LINEAR TERMS <==" << std::endl;
721  fout << " //" << std::endl;
722  return;
723  }
724  fout << " //" << std::endl;
725  fout << " // here follows all linear terms" << std::endl;
726  fout << " // at the end of each line, the relative importance of the term is given" << std::endl;
727  fout << " //" << std::endl;
728  const RuleEnsemble *rens = &(fRuleFit.GetRuleEnsemble());
729  UInt_t nlin = rens->GetNLinear();
730  for (UInt_t il=0; il<nlin; il++) {
731  if (rens->IsLinTermOK(il)) {
732  Double_t norm = rens->GetLinNorm(il);
733  Double_t imp = rens->GetLinImportance(il)/rens->GetImportanceRef();
734  fout << " rval+="
735  // << std::setprecision(10) << rens->GetLinCoefficients(il)*norm << "*std::min(" << setprecision(10) << rens->GetLinDP(il)
736  // << ", std::max( inputValues[" << il << "]," << std::setprecision(10) << rens->GetLinDM(il) << "));"
737  << std::setprecision(10) << rens->GetLinCoefficients(il)*norm
738  << "*std::min( double(" << std::setprecision(10) << rens->GetLinDP(il)
739  << "), std::max( double(inputValues[" << il << "]), double(" << std::setprecision(10) << rens->GetLinDM(il) << ")));"
740  << std::flush;
741  fout << " // importance = " << Form("%3.3f",imp) << std::endl;
742  }
743  }
744 }
745 
746 ////////////////////////////////////////////////////////////////////////////////
747 /// get help message text
748 ///
749 /// typical length of text line:
750 /// "|--------------------------------------------------------------|"
751 
752 void TMVA::MethodRuleFit::GetHelpMessage() const
753 {
754  TString col = gConfig().WriteOptionsReference() ? TString() : gTools().Color("bold");
755  TString colres = gConfig().WriteOptionsReference() ? TString() : gTools().Color("reset");
756  TString brk = gConfig().WriteOptionsReference() ? "<br>" : "";
757 
758  Log() << Endl;
759  Log() << col << "--- Short description:" << colres << Endl;
760  Log() << Endl;
761  Log() << "This method uses a collection of so called rules to create a" << Endl;
762  Log() << "discriminating scoring function. Each rule consists of a series" << Endl;
763  Log() << "of cuts in parameter space. The ensemble of rules are created" << Endl;
764  Log() << "from a forest of decision trees, trained using the training data." << Endl;
765  Log() << "Each node (apart from the root) corresponds to one rule." << Endl;
766  Log() << "The scoring function is then obtained by linearly combining" << Endl;
767  Log() << "the rules. A fitting procedure is applied to find the optimum" << Endl;
768  Log() << "set of coefficients. The goal is to find a model with few rules" << Endl;
769  Log() << "but with a strong discriminating power." << Endl;
770  Log() << Endl;
771  Log() << col << "--- Performance optimisation:" << colres << Endl;
772  Log() << Endl;
773  Log() << "There are two important considerations to make when optimising:" << Endl;
774  Log() << Endl;
775  Log() << " 1. Topology of the decision tree forest" << brk << Endl;
776  Log() << " 2. Fitting of the coefficients" << Endl;
777  Log() << Endl;
778  Log() << "The maximum complexity of the rules is defined by the size of" << Endl;
779  Log() << "the trees. Large trees will yield many complex rules and capture" << Endl;
780  Log() << "higher order correlations. On the other hand, small trees will" << Endl;
781  Log() << "lead to a smaller ensemble with simple rules, only capable of" << Endl;
782  Log() << "modeling simple structures." << Endl;
783  Log() << "Several parameters exists for controlling the complexity of the" << Endl;
784  Log() << "rule ensemble." << Endl;
785  Log() << Endl;
786  Log() << "The fitting procedure searches for a minimum using a gradient" << Endl;
787  Log() << "directed path. Apart from step size and number of steps, the" << Endl;
788  Log() << "evolution of the path is defined by a cut-off parameter, tau." << Endl;
789  Log() << "This parameter is unknown and depends on the training data." << Endl;
790  Log() << "A large value will tend to give large weights to a few rules." << Endl;
791  Log() << "Similarly, a small value will lead to a large set of rules" << Endl;
792  Log() << "with similar weights." << Endl;
793  Log() << Endl;
794  Log() << "A final point is the model used; rules and/or linear terms." << Endl;
795  Log() << "For a given training sample, the result may improve by adding" << Endl;
796  Log() << "linear terms. If best performance is obtained using only linear" << Endl;
797  Log() << "terms, it is very likely that the Fisher discriminant would be" << Endl;
798  Log() << "a better choice. Ideally the fitting procedure should be able to" << Endl;
799  Log() << "make this choice by giving appropriate weights for either terms." << Endl;
800  Log() << Endl;
801  Log() << col << "--- Performance tuning via configuration options:" << colres << Endl;
802  Log() << Endl;
803  Log() << "I. TUNING OF RULE ENSEMBLE:" << Endl;
804  Log() << Endl;
805  Log() << " " << col << "ForestType " << colres
806  << ": Recommended is to use the default \"AdaBoost\"." << brk << Endl;
807  Log() << " " << col << "nTrees " << colres
808  << ": More trees leads to more rules but also slow" << Endl;
809  Log() << " performance. With too few trees the risk is" << Endl;
810  Log() << " that the rule ensemble becomes too simple." << brk << Endl;
811  Log() << " " << col << "fEventsMin " << colres << brk << Endl;
812  Log() << " " << col << "fEventsMax " << colres
813  << ": With a lower min, more large trees will be generated" << Endl;
814  Log() << " leading to more complex rules." << Endl;
815  Log() << " With a higher max, more small trees will be" << Endl;
816  Log() << " generated leading to more simple rules." << Endl;
817  Log() << " By changing this range, the average complexity" << Endl;
818  Log() << " of the rule ensemble can be controlled." << brk << Endl;
819  Log() << " " << col << "RuleMinDist " << colres
820  << ": By increasing the minimum distance between" << Endl;
821  Log() << " rules, fewer and more diverse rules will remain." << Endl;
822  Log() << " Initially it is a good idea to keep this small" << Endl;
823  Log() << " or zero and let the fitting do the selection of" << Endl;
824  Log() << " rules. In order to reduce the ensemble size," << Endl;
825  Log() << " the value can then be increased." << Endl;
826  Log() << Endl;
827  // "|--------------------------------------------------------------|"
828  Log() << "II. TUNING OF THE FITTING:" << Endl;
829  Log() << Endl;
830  Log() << " " << col << "GDPathEveFrac " << colres
831  << ": fraction of events in path evaluation" << Endl;
832  Log() << " Increasing this fraction will improve the path" << Endl;
833  Log() << " finding. However, a too high value will give few" << Endl;
834  Log() << " unique events available for error estimation." << Endl;
835  Log() << " It is recommended to use the default = 0.5." << brk << Endl;
836  Log() << " " << col << "GDTau " << colres
837  << ": cutoff parameter tau" << Endl;
838  Log() << " By default this value is set to -1.0." << Endl;
839  // "|----------------|---------------------------------------------|"
840  Log() << " This means that the cut off parameter is" << Endl;
841  Log() << " automatically estimated. In most cases" << Endl;
842  Log() << " this should be fine. However, you may want" << Endl;
843  Log() << " to fix this value if you already know it" << Endl;
844  Log() << " and want to reduce on training time." << brk << Endl;
845  Log() << " " << col << "GDTauPrec " << colres
846  << ": precision of estimated tau" << Endl;
847  Log() << " Increase this precision to find a more" << Endl;
848  Log() << " optimum cut-off parameter." << brk << Endl;
849  Log() << " " << col << "GDNStep " << colres
850  << ": number of steps in path search" << Endl;
851  Log() << " If the number of steps is too small, then" << Endl;
852  Log() << " the program will give a warning message." << Endl;
853  Log() << Endl;
854  Log() << "III. WARNING MESSAGES" << Endl;
855  Log() << Endl;
856  Log() << col << "Risk(i+1)>=Risk(i) in path" << colres << brk << Endl;
857  Log() << col << "Chaotic behaviour of risk evolution." << colres << Endl;
858  // "|----------------|---------------------------------------------|"
859  Log() << " The error rate was still decreasing at the end" << Endl;
860  Log() << " By construction the Risk should always decrease." << Endl;
861  Log() << " However, if the training sample is too small or" << Endl;
862  Log() << " the model is overtrained, such warnings can" << Endl;
863  Log() << " occur." << Endl;
864  Log() << " The warnings can safely be ignored if only a" << Endl;
865  Log() << " few (<3) occur. If more warnings are generated," << Endl;
866  Log() << " the fitting fails." << Endl;
867  Log() << " A remedy may be to increase the value" << brk << Endl;
868  Log() << " "
869  << col << "GDValidEveFrac" << colres
870  << " to 1.0 (or a larger value)." << brk << Endl;
871  Log() << " In addition, if "
872  << col << "GDPathEveFrac" << colres
873  << " is too high" << Endl;
874  Log() << " the same warnings may occur since the events" << Endl;
875  Log() << " used for error estimation are also used for" << Endl;
876  Log() << " path estimation." << Endl;
877  Log() << " Another possibility is to modify the model - " << Endl;
878  Log() << " See above on tuning the rule ensemble." << Endl;
879  Log() << Endl;
880  Log() << col << "The error rate was still decreasing at the end of the path"
881  << colres << Endl;
882  Log() << " Too few steps in path! Increase "
883  << col << "GDNSteps" << colres << "." << Endl;
884  Log() << Endl;
885  Log() << col << "Reached minimum early in the search" << colres << Endl;
886 
887  Log() << " Minimum was found early in the fitting. This" << Endl;
888  Log() << " may indicate that the used step size "
889  << col << "GDStep" << colres << "." << Endl;
890  Log() << " was too large. Reduce it and rerun." << Endl;
891  Log() << " If the results still are not OK, modify the" << Endl;
892  Log() << " model either by modifying the rule ensemble" << Endl;
893  Log() << " or add/remove linear terms" << Endl;
894 }