Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
MethodPyKeras.h
Go to the documentation of this file.
1 // @(#)root/tmva/pymva $Id$
2 // Author: Stefan Wunsch
3 
4 /**********************************************************************************
5  * Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6  * Package: TMVA *
7  * Class : MethodPyKeras *
8  * Web : http://tmva.sourceforge.net *
9  * *
10  * Description: *
11  * Interface for Keras python package which is a wrapper for the Theano and *
12  * Tensorflow libraries *
13  * *
14  * Authors (alphabetical): *
15  * Stefan Wunsch <stefan.wunsch@cern.ch> - KIT, Germany *
16  * *
17  * Copyright (c) 2016: *
18  * CERN, Switzerland *
19  * KIT, Germany *
20  * *
21  * Redistribution and use in source and binary forms, with or without *
22  * modification, are permitted according to the terms listed in LICENSE *
23  * (http://tmva.sourceforge.net/LICENSE) *
24  **********************************************************************************/
25 
26 #ifndef ROOT_TMVA_MethodPyKeras
27 #define ROOT_TMVA_MethodPyKeras
28 
29 #include "TMVA/PyMethodBase.h"
30 
31 namespace TMVA {
32 
33  class MethodPyKeras : public PyMethodBase {
34 
35  public :
36 
37  // constructors
38  MethodPyKeras(const TString &jobName,
39  const TString &methodTitle,
40  DataSetInfo &dsi,
41  const TString &theOption = "");
42  MethodPyKeras(DataSetInfo &dsi,
43  const TString &theWeightFile);
44  ~MethodPyKeras();
45 
46  void Train();
47  void Init();
48  void DeclareOptions();
49  void ProcessOptions();
50 
51  // Check whether the given analysis type (regression, classification, ...)
52  // is supported by this method
53  Bool_t HasAnalysisType(Types::EAnalysisType type, UInt_t numberClasses, UInt_t);
54  // Get signal probability of given event
55  Double_t GetMvaValue(Double_t *errLower, Double_t *errUpper);
56  std::vector<Double_t> GetMvaValues(Long64_t firstEvt, Long64_t lastEvt, Bool_t logProgress);
57  // Get regression values of given event
58  std::vector<Float_t>& GetRegressionValues();
59  // Get class probabilities of given event
60  std::vector<Float_t>& GetMulticlassValues();
61 
62  const Ranking *CreateRanking() { return 0; }
63  virtual void TestClassification();
64  virtual void AddWeightsXMLTo(void*) const{}
65  virtual void ReadWeightsFromXML(void*){}
66  virtual void ReadWeightsFromStream(std::istream&) {} // backward compatibility
67  virtual void ReadWeightsFromStream(TFile&){} // backward compatibility
68  void ReadModelFromFile();
69 
70  void GetHelpMessage() const;
71 
72  /// enumeration defining the used Keras backend
73  enum EBackendType { kUndefined = -1, kTensorFlow = 0, kTheano = 1, kCNTK = 2 };
74 
75  /// Get the Keras backend (can be: TensorFlow, Theano or CNTK)
76  EBackendType GetKerasBackend();
77  TString GetKerasBackendName();
78 
79  private:
80 
81  TString fFilenameModel; // Filename of the previously exported Keras model
82  UInt_t fBatchSize {0}; // Training batch size
83  UInt_t fNumEpochs {0}; // Number of training epochs
84  Int_t fNumThreads {0}; // Number of CPU threads (if 0 uses default values)
85  Int_t fVerbose; // Keras verbosity during training
86  Bool_t fContinueTraining; // Load weights from previous training
87  Bool_t fSaveBestOnly; // Store only weights with smallest validation loss
88  Int_t fTriesEarlyStopping; // Stop training if validation loss is not decreasing for several epochs
89  TString fLearningRateSchedule; // Set new learning rate at specific epochs
90  TString fTensorBoard; // Store log files during training
91  TString fNumValidationString; // option string defining the number of validation events
92  TString fGpuOptions; // GPU options (for Tensorflow to set in session_config.gpu_options)
93 
94  bool fModelIsSetup = false; // flag whether model is loaded, neede for getMvaValue during evaluation
95  float* fVals = nullptr; // variables array used for GetMvaValue
96  std::vector<float> fOutput; // probability or regression output array used for GetMvaValue
97  UInt_t fNVars {0}; // number of variables
98  UInt_t fNOutputs {0}; // number of outputs (classes or targets)
99  TString fFilenameTrainedModel; // output filename for trained model
100 
101  void SetupKerasModel(Bool_t loadTrainedModel); // setups the needed variables loads the model
102  UInt_t GetNumValidationSamples(); // get numer of validation events according to given option
103 
104  ClassDef(MethodPyKeras, 0);
105  };
106 
107 } // namespace TMVA
108 
109 #endif // ROOT_TMVA_MethodPyKeras