Logo ROOT   6.30.04
Reference Guide
 All Namespaces Files Pages
LegendreAssoc.C
Go to the documentation of this file.
1 /// \file
2 /// \ingroup tutorial_math
3 /// \notebook
4 /// Example describing the usage of different kinds of Associate Legendre Polynomials
5 /// To execute the macro type in:
6 ///
7 /// ~~~{.cpp}
8 /// root[0] .x LegendreAssoc.C
9 /// ~~~
10 ///
11 /// It draws common graphs for first 5
12 /// Associate Legendre Polynomials
13 /// and Spherical Associate Legendre Polynomials
14 /// Their integrals on the range [-1, 1] are calculated
15 ///
16 /// \macro_image
17 /// \macro_output
18 /// \macro_code
19 ///
20 /// \author Magdalena Slawinska
21 
22 
23 #include "TMath.h"
24 #include "TF1.h"
25 #include "TCanvas.h"
26 
27 #include <Riostream.h>
28 #include "TLegend.h"
29 #include "TLegendEntry.h"
30 
31 #include "Math/IFunction.h"
32 #include <cmath>
33 #include "TSystem.h"
34 
35 void LegendreAssoc()
36 {
37  R__LOAD_LIBRARY(libMathMore);
38 
39  std::cout <<"Drawing associate Legendre Polynomials.." << std::endl;
40  TCanvas *Canvas = new TCanvas("DistCanvas", "Associate Legendre polynomials", 10, 10, 800, 500);
41  Canvas->Divide(2,1);
42  TLegend *leg1 = new TLegend(0.5, 0.7, 0.8, 0.89);
43  TLegend *leg2 = new TLegend(0.5, 0.7, 0.8, 0.89);
44 
45  //-------------------------------------------
46  //drawing the set of Legendre functions
47  TF1* L[5];
48 
49  L[0]= new TF1("L_0", "ROOT::Math::assoc_legendre(1, 0,x)", -1, 1);
50  L[1]= new TF1("L_1", "ROOT::Math::assoc_legendre(1, 1,x)", -1, 1);
51  L[2]= new TF1("L_2", "ROOT::Math::assoc_legendre(2, 0,x)", -1, 1);
52  L[3]= new TF1("L_3", "ROOT::Math::assoc_legendre(2, 1,x)", -1, 1);
53  L[4]= new TF1("L_4", "ROOT::Math::assoc_legendre(2, 2,x)", -1, 1);
54 
55  TF1* SL[5];
56 
57  SL[0]= new TF1("SL_0", "ROOT::Math::sph_legendre(1, 0,x)", -TMath::Pi(), TMath::Pi());
58  SL[1]= new TF1("SL_1", "ROOT::Math::sph_legendre(1, 1,x)", -TMath::Pi(), TMath::Pi());
59  SL[2]= new TF1("SL_2", "ROOT::Math::sph_legendre(2, 0,x)", -TMath::Pi(), TMath::Pi());
60  SL[3]= new TF1("SL_3", "ROOT::Math::sph_legendre(2, 1,x)", -TMath::Pi(), TMath::Pi());
61  SL[4]= new TF1("SL_4", "ROOT::Math::sph_legendre(2, 2,x)", -TMath::Pi(), TMath::Pi() );
62 
63  Canvas->cd(1);
64  gPad->SetGrid();
65  gPad->SetFillColor(kWhite);
66  L[0]->SetMaximum(3);
67  L[0]->SetMinimum(-2);
68  L[0]->SetTitle("Associate Legendre Polynomials");
69  for (int nu = 0; nu < 5; nu++) {
70  L[nu]->SetLineStyle(1);
71  L[nu]->SetLineWidth(2);
72  L[nu]->SetLineColor(nu+1);
73  }
74 
75  leg1->AddEntry(L[0]->DrawCopy(), " P^{1}_{0}(x)", "l");
76  leg1->AddEntry(L[1]->DrawCopy("same"), " P^{1}_{1}(x)", "l");
77  leg1->AddEntry(L[2]->DrawCopy("same"), " P^{2}_{0}(x)", "l");
78  leg1->AddEntry(L[3]->DrawCopy("same"), " P^{2}_{1}(x)", "l");
79  leg1->AddEntry(L[4]->DrawCopy("same"), " P^{2}_{2}(x)", "l");
80  leg1->Draw();
81 
82  Canvas->cd(2);
83  gPad->SetGrid();
84  gPad->SetFillColor(kWhite);
85  SL[0]->SetMaximum(1);
86  SL[0]->SetMinimum(-1);
87  SL[0]->SetTitle("Spherical Legendre Polynomials");
88  for (int nu = 0; nu < 5; nu++) {
89  SL[nu]->SetLineStyle(1);
90  SL[nu]->SetLineWidth(2);
91  SL[nu]->SetLineColor(nu+1);
92  }
93 
94  leg2->AddEntry(SL[0]->DrawCopy(), " P^{1}_{0}(x)", "l");
95  leg2->AddEntry(SL[1]->DrawCopy("same"), " P^{1}_{1}(x)", "l");
96  leg2->AddEntry(SL[2]->DrawCopy("same"), " P^{2}_{0}(x)", "l");
97  leg2->AddEntry(SL[3]->DrawCopy("same"), " P^{2}_{1}(x)", "l");
98  leg2->AddEntry(SL[4]->DrawCopy("same"), " P^{2}_{2}(x)", "l");
99  leg2->Draw();
100 
101 
102  //integration
103 
104  std::cout << "Calculating integrals of Associate Legendre Polynomials on [-1, 1]" << std::endl;
105  double integral[5];
106  for (int nu = 0; nu < 5; nu++) {
107  integral[nu] = L[nu]->Integral(-1.0, 1.0);
108  std::cout <<"Integral [-1,1] for Associated Legendre Polynomial of Degree " << nu << "\t = \t" << integral[nu] << std::endl;
109  }
110 }
111