ROOT
6.30.04
Reference Guide
All
Namespaces
Files
Pages
GiniIndexWithLaplace.cxx
Go to the documentation of this file.
1
// @(#)root/tmva $Id$
2
// Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss
3
4
/**********************************************************************************
5
* Project: TMVA - a Root-integrated toolkit for multivariate data analysis *
6
* Package: TMVA *
7
* Class : TMVA::GiniIndex *
8
* Web : http://tmva.sourceforge.net *
9
* *
10
* Description: Implementation of the GiniIndex With Laplace correction *
11
* as separation criterion *
12
* Gini(Sample M) = 1 - (c(1)/N)^2 - (c(2)/N)^2 .... - (c(k)/N)^2 *
13
* Where: M is a sample of whatever N elements (events) *
14
* that belong to K different classes *
15
* c(k) is the number of elements that belong to class k *
16
* Laplace's correction to the prob.density c/N --> (c+1)/(N+2) *
17
* for just Signal and Background classes this then boils down to: *
18
* Gini(Sample) = 2(s*b+s+b+1)/(s+b+2)^2 *
19
* *
20
* Authors (alphabetical): *
21
* Andreas Hoecker <Andreas.Hocker@cern.ch> - CERN, Switzerland *
22
* Helge Voss <Helge.Voss@cern.ch> - MPI-K Heidelberg, Germany *
23
* Kai Voss <Kai.Voss@cern.ch> - U. of Victoria, Canada *
24
* *
25
* Copyright (c) 2005: *
26
* CERN, Switzerland *
27
* U. of Victoria, Canada *
28
* Heidelberg U., Germany *
29
* *
30
* Redistribution and use in source and binary forms, with or without *
31
* modification, are permitted according to the terms listed in LICENSE *
32
* (http://tmva.sourceforge.net/LICENSE) *
33
**********************************************************************************/
34
35
/*! \class TMVA::GiniIndexWithLaplace
36
\ingroup TMVA
37
38
Implementation of the GiniIndex With Laplace correction as separation criterion
39
40
Large Gini Indices (maximum 0.5) mean , that the sample is well mixed (same
41
amount of signal and bkg) bkg.
42
43
Small Indices mean, well separated.
44
45
#### General definition:
46
47
\f[
48
Gini(Sample M) = 1 - (\frac{c(1)}{N})^2 - (\frac{c(2)}{N})^2 .... - (\frac{c(k)}{N})^2
49
\f]
50
51
Where:
52
53
\f$ M \f$ is a sample of whatever \f$ N \f$ elements (events) that belong
54
to \f$ K \f$ different classes.
55
56
\f$ c(k) \f$ is the number of elements that belong to class \f$ k \f$ for just
57
Signal and Background classes this boils down to:
58
59
The Laplace's correction to the probability distribution would turn the
60
\f$ \frac{c(1)}{N} \f$ into \f$ \frac{(c(1)+1)}{(N+2)} \f$ using this the
61
simple Gini Index for two classes
62
63
\f[
64
Gini(Sample) = \frac{2sb}{(s+b)^2}
65
\f]
66
67
turns into
68
69
\f[
70
GiniLaplace(Sample) = \frac{2(sb+s+b+1)}{(s+b+2)^2}
71
\f]
72
*/
73
74
#include "
TMVA/GiniIndexWithLaplace.h
"
75
76
#include "
Rtypes.h
"
77
78
ClassImp(TMVA::GiniIndexWithLaplace);
79
80
////////////////////////////////////////////////////////////////////////////////
81
82
Double_t TMVA::GiniIndexWithLaplace::GetSeparationIndex(
const
Double_t s,
const
Double_t b )
83
{
84
if
(s+b <= 0)
return
0;
85
if
(s<=0 || b <=0)
return
0;
86
else
return
(s*b+s+b+1)/(s+b+2)/(s+b+2);
87
}
88
89
Rtypes.h
GiniIndexWithLaplace.h
tmva
tmva
src
GiniIndexWithLaplace.cxx
Generated on Tue May 5 2020 14:03:32 for ROOT by
1.8.5